

MAIN RESIDENCE

PRESCRIPTIVE PROTOTYPE #4 DESIGN FOR TWO STORY MASONRY STRUCTURE 1st FLOOR MODEL WITH WOOD STRUCTURE 2nd FLOOR HOME IN PUERTO RICO

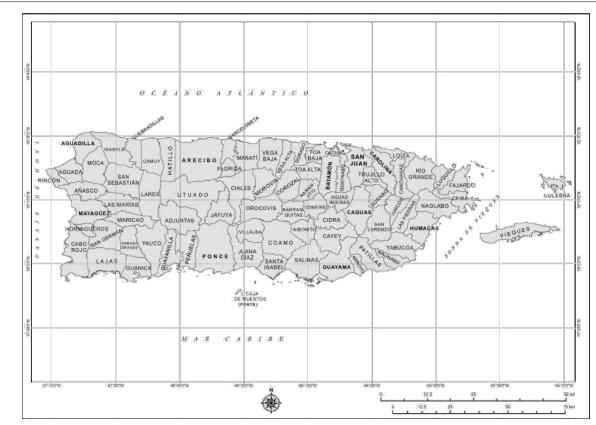
PREFACE:

THIS PRESCRIPTIVE HOME DRAWING SET PRESENTS RECOMMENDATIONS FOR THE CONSTRUCTION OF A TWO STORY HOME. THIS GUIDANCE DISPLAYS INFORMATION FOR A PARTICULAR SIZED HOME. THE DESIGN INFORMATION PROVIDED HEREIN INCORPORATES SEISMIC AND WIND CRITERIA BASED UPON THE LATEST PUERTO RICO BUILDING CODE WHICH REFERENCES THE 2018 INTERNATIONAL RESIDENTIAL CODE (2018 IRC), 2018 INTERNATIONAL BUILDING CODE (2018 IBC), AND THE AMERICAN SOCIETY OF CIVIL ENGINEERS ASCE/SEI 7-16: MINIMUM DESIGN LOADS AND ASSOCIATED CRITIERIA FOR BUILDINGS AND OTHER STRUCTURES.

ALL RECOMMENDED DESIGN WORK, INCLUDING THOSE PARTS COVERED BY THIS DOCUMENT, SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL SUCH AS A REGISTERED PROFESSIONAL ENGINEER OR A LICENSED ARCHITECT IN PUERTO RICO. WHEN THESE GUIDANCE DRAWINGS ARE USED FOR A PROJECT, THEY SHOULD BE MODIFIED AS NEEDED IN ORDER TO COMPLY WITH ALL OF THE APPLICABLE CODE REQUIREMENTS FOR A GIVEN PROJECT SITE, THEN SIGNED AND SEALED IN ACCORDANCE WITH PUERTO RICO LAWS, BUILDING CODE, AND DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERENCE (DDEC). THIS SET ASSUMES A FLAT PROJECT SITE, IF THE SITE IS NOT FLAT, A REGISTERED PROFESSIONAL ENGINEER OR A LICENSED ARCHITECT WILL NEED TO MODIFY THE FOUNDATION DESIGN. A GEOTECHNICAL ENGINEER MAY ALSO BE REQUIRED TO PERFORM A SLOPE STABILITY ANALYSIS AND PROVIDE SOIL CONDITIONS FOR THE DESIGN OF A REVISED HOUSE FOUNDATION.

THE FOLLOWING BOUNDARY CONDITIONS SHALL BE MET IN ORDER TO USE THIS DRAWING SET. THIS DRAWING SET IS NOT VALID IF THE PROJECT PARAMETERS ARE OUTSIDE OF THESE BOUNDARY CONDITIONS:

- 1. TWO STORY BUILDING WITH THE MAXIMUM MEAN ROOF HEIGHT AS SHOWN IN THE DRAWING SET.
- 2. ROOF AS SHOWN IN THE DRAWING SET.
- 3. BUILDING WIDTH AND LENGTH AS SHOWN IN THE DRAWING SET.


ALL CONSTRUCTION MUST COMPLY WITH THE PUERTO RICO BUILDING CODE. YOU ARE REQUIRED TO OBTAIN THE NECESSARY BUILDING PERMITS FROM THE DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC). SIGNED AND SEALED DRAWINGS FOR PERMIT MUST BE SUBMITTED TO THE DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC).

STRUCTURES LOCATED IN SPECIAL FLOOD HAZARD AREAS SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL AND CERTIFIED TO COMPY WITH ASCE 24-14 FLOOD RESISTANT DESIGN AND CONSTRUCTION.

INFORMATION ABOUT STORM SURGE CAN BE ACCESSED AT HTTPS://NHC.NOAA.GOV/NATIONALSURGE/, BY CLICKING ON PUERTO RICO. ADDITIONAL FLOOD DESIGN INFORMATION CAN BE ACCESSED AT THE FEMA FLOOD MAP SERVICE CENTER HTTPS://MSC.FEMA.GOV/PORTAL/ADVANCESEARCH BY SELECTING PUERTO RICO FOR THE STATE AND THEN SELECTING THE APPROPRIATE COUNTY FOR PROJECT LOCATION. REFER TO PLANNING REGULATION 13: SPECIAL FLOOD HAZARD AREAS REGULATION, WHICH PROVIDES ADDITIONAL FLOOD HAZARD REQUIREMENTS AT HTTP://JP.PR.GOV/

FEMA/DDEC DOES NOT SPECIFICALLY ENDORSE THE PRODUCTS OF ANY MANUFACTURER. PRODUCTS THAT EQUAL THE SPECIFICATIONS OF THE NOTED PRODUCTS MAY BE SUBSTITUTED

SHEET NUMBER	SHEET NAME
	ARCHITECTURAL
A-004	Title Sheet
A-400	Floor Plans and Elevations
A-401	General Notes, Sections and Elevations
A-402	Notes, Windows, Doors, Finishes, Bathrooms & Kitchen Schedules
	Reflected Ceiling Plan
A-500	Wall Sections
A-510	Doors and Windows Details
A-511	Roofing Details
A-512	Module Joint Details
	STRUCTURAL
S-001	Title Sheet
S-002A	General Notes
S-002B	General Notes
S-003	Design Data
S-004	Schedule and Hook Types
S-005	Foundation Plans
S-006	First Floor Plan
S-007	Second Floor Plan
S-008	Roof Framing Plans
S-009	Primary Structure Elevations
S-010	Primary Structure Elevations
S-011	Expansion Module Structure Elevations
S-012	Foundation Sections and Details
S-013	Wall Sections and Details
S-014	Wood Framing Details
S-015	Wood Framing Details
S-016	Window Protection Details
S-017	Masonry and Concrete Details
	PLUMBING
PL-103	Plumbing layout
PL-104	Plumbing layout
PL-200	Plumbing notes and details
	ELECTRICAL
E-400	Electrical layout
E-401	Electrical notes and details

MAP OF PUERTO RICO (N.T.S.)

ROOM KEY: ROOM NAME ROOM NAME ROOM NUMBER PROOM NUMBER P

ABBREVIATIONS

& - And	
< - Angle	
@ - At	
C - Center Line	
_	
Ø - Diameter	
# - Pound	
± - Tolerance Dimension	
A/E - Architect / Engineer	
ADDL - Additional	
ADH - Adhesive	
ADJ - Adjustable	
ADJC - Adjacent	
AF - Access Floor	
AFF - Above Finished Floor	
AL - Aluminum	
ALT - Alternate	
APPROX - Approximately	
ARCH - Architect	
BD - Board	
BETW - Between	
BLDG - Building	
_	
BLKG - Blocking	
BM - Beam	
DO De Otto	
BO - By Others	
BOT - Bottom	
CLG - Ceiling	
CL- Closet	
CLR - Clear	
CMU - Concrete Masonry Unit	
CNTR - Counter	
COL - Column	
CONC - Concrete	
CONSTR - Construction	
CONT - Continuous	
CONTR - Contractor	
CORR - Corridor	
CT - Ceramic Tile	
DIA - Diameter	
DIM - Dimension	
DN - Down	
DOP - Door Opening	
DR - Door	
DTL - Detail	
DWG - Drawing	
EA - Each	
EJ - Expansion Joint	
EL - Elevation	
ELEC - Electrical	
ENCL - Enclosure	
ENGR - Engineer	
ENTR - Entrance	
EQ - Equal	
EQUIP - Equipment	
EXT - Exterior	
F/F - Face to Face	
FDN - Foundation	
FIN - Finish	
FLR - Floor	
FT - Foot or Feet	
FTG - Footing	
<u>-</u>	
FUT - Future	
GC - General Contractor	
GND - Ground	
GR - Grade	
GWB - Gypsum Wa ll Board	
HDW - Hardware	
HT - Height	
HM - Hollow Metal	
HMD - Hollow Metal Door	
HNDRL - Handrail	
HORIZ - Horizontal	

RLG - Railing IN - Inch or Inches RM - Room INSUL - Insulation INT - Interior RO - Rough Opening S - South SCHED - Schedule JT - Joint KIT - Kitchen SCR - Screw KO - Knockout SECT - Section L - Length or Left SF - Square Foot or Feet LAV - Lavatory SHR - Shower LF - Linear Foot or Feet SHT - Sheet LNTL - Lintel SHTG - Sheathing LONG - Longitudinal SIM - Similar LP - Low Point SK - Sink LT - Light SM - Sheet Metal LTG - Lighting LTWT - Lightweight SPEC - Specifications MAS - Masonry SQ - Square MATL - Material SS - Stainless Steel MAX - Maximum SSF - Solid Surface MECH - Mechanical STD - Standard MED - Medium STL - Steel MEMB - Membrane STRUCT - Structural SUSP - Suspended MF - Metal Flashing SYM - Symbol MFR - Manufacturer SYMM - Symmetrical MIN - Minimum SYP - Southern Yellow Pine MIR - Mirror SYS - System MISC - Miscellaneous ML - Metal Lath T - Treads (Stairs) MLDG - Molding T&B - Top and Bottom MLWK - Millwork T&G - Tongue and Groove MO - Masonry Opening TBD - To Be Determined MTD - Mounted TBM - Top of Beam MTR - Mortar TC - Top of Concrete MTL - Metal TEMP - Temporary MVBL - Movable TF - Top of Footing N - North TFF - Top of Finished Floor THK - Thickness NA - Not Applicable THRES - Threshold NIC - Not In Contract THRU - Through NO - Number T.O. - Top Of NOM - Nominal TOC - Top Of Concrete NTS - Not To Scale OA - Overall TOF - Top of Footing OC - On Center TOL - Tolerance OPNG - Opening TOM - Top Of Masonry OPP - Opposite TOP - Top of Pavement TOS - Top Of Steel PAR - Parallel PERF - Perforated TOSL - Top of Slab PERIM - Perimeter TOW - Top Of Wall TYP - Typical PERP - Perpendicular **UNFIN** - Unfinished UON - Unless Otherwise Noted PLAS - Plaster VB - Vapor Barrier or Vinyl Base PLBG - Plumbing VER - Verify PLYWD - Plywood VERT - Vertical PNL - Panel VEST - Vestibule POL - Polished VIF - Contractor to Verify In Field PR - Pair VR - Vapor Retarder PREFIN - Prefinished W - West PT - Pressure Treated W/ - With PTD - Painted W/O - Without PTN - Partition WC - Water Closet QTY - Quantity WD - Wood QUAL - Quality RCP - Reflected Ceiling Plan WLD - Welded WP - Working Point REC - Recessed WT - Weight REF - Reference REFR - Refrigerator WTH - Width WTPRF - Waterproofing REINF - Reinforced or Reinforcing WWF - Welded Wire Fabric REM - Removable REQD - Required REQMTS - Requirements

CLIENT:

PROJECT NAME:

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO
DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE
(DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR
BUILDING REQUIREMENTS IN PUERTO RICO. THIS
INFORMATION HAS BEEN DEVELOPED FOR THE USE OF
PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO
RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY
APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE
UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG

No. Date Description

PROFESSIONAL SEALS:

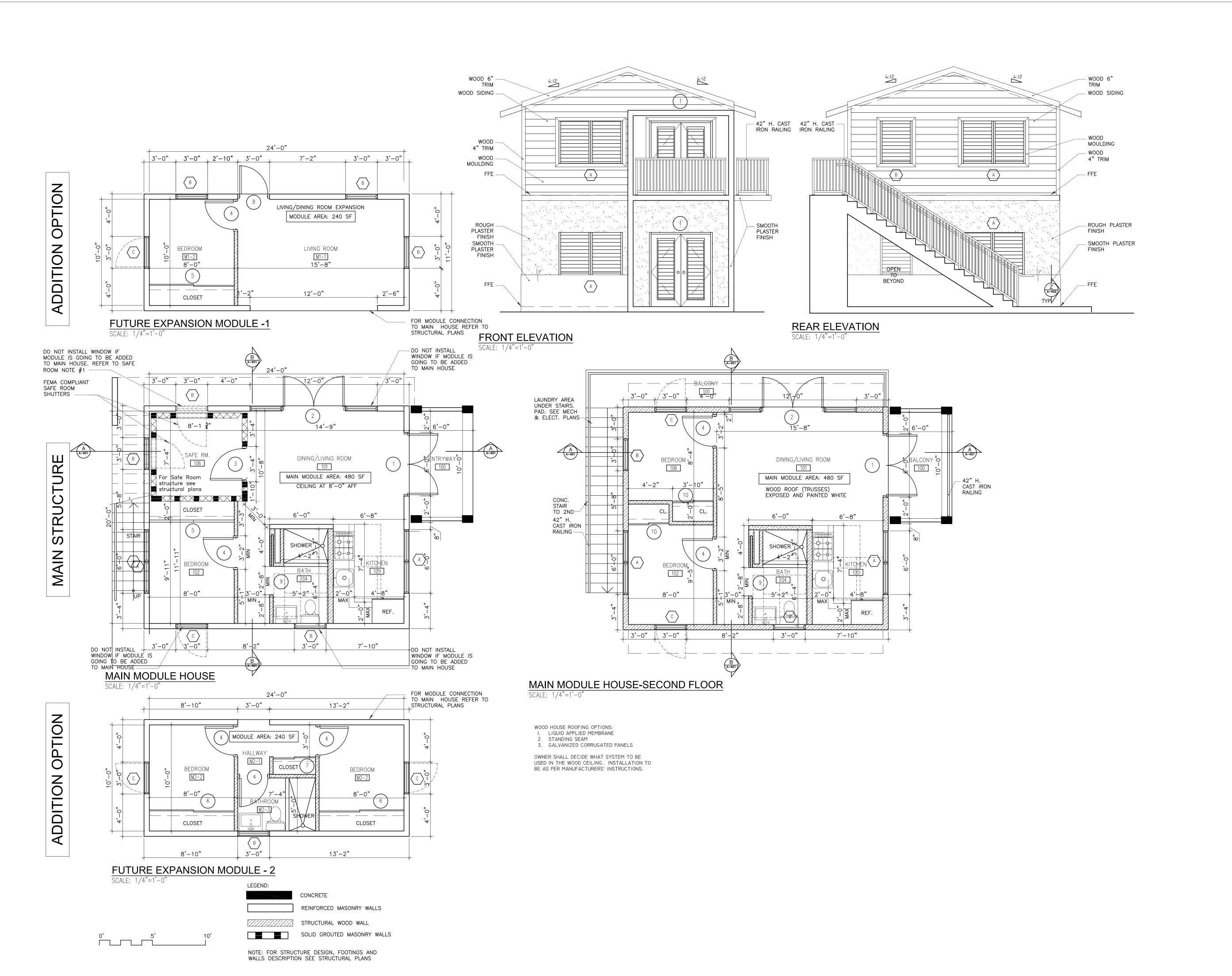
SHEET TITLE:

Title Sheet

Date Issued:

Sheet Number:

SHEET INFORMATION:


JOB No.

Drawn By:

Checked By:

QC Review:

Phase:

CONSULTANT:

CLIENT:

PROJECT NAME:

TWO STORY CMU AND 2ND FL. WOOD HOME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG

No. Date Description

PROFESSIONAL SEALS:

SHEET TITLE:

PROTOTYPE 4 - FLOOR PLANS & ELEVATIONS

SHEET INFORMATION:

JOB No.	Date Issued: 05/08/20
Drawn By:	Sheet Number:
Checked By:	A 400
QC Review:	A-400
Phase:	

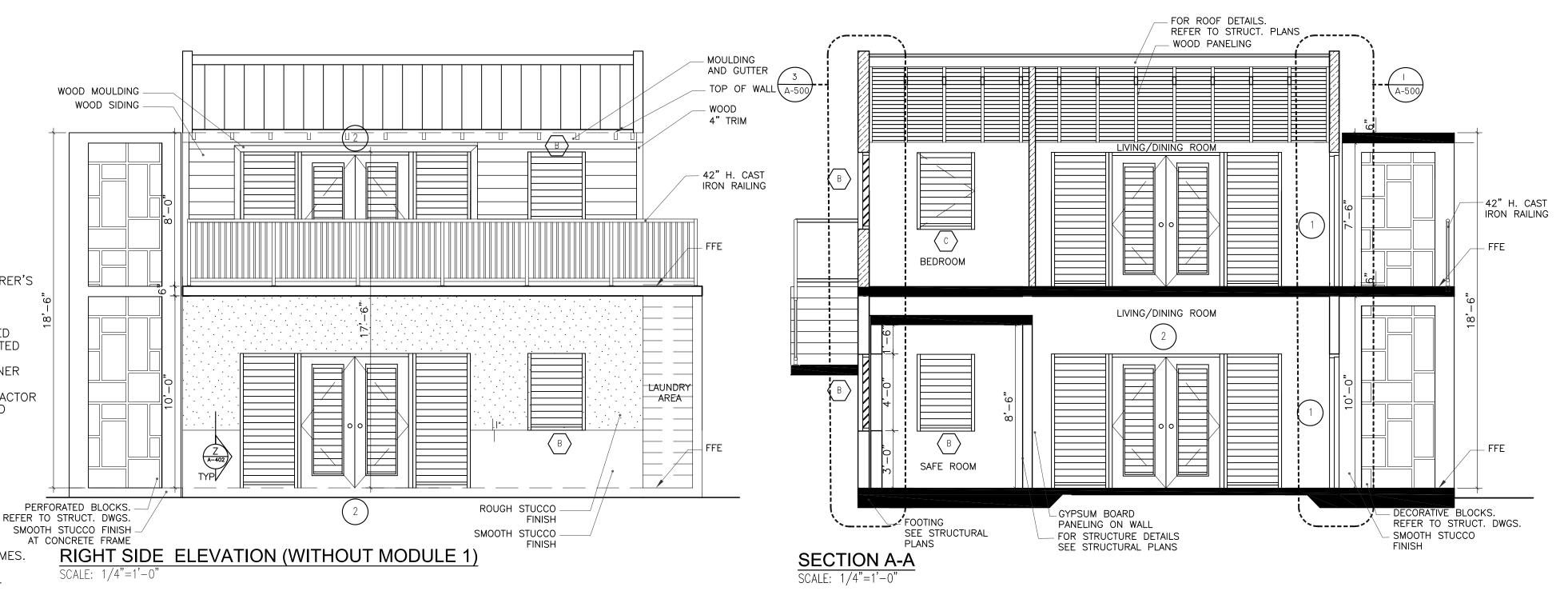
GENERAL NOTES

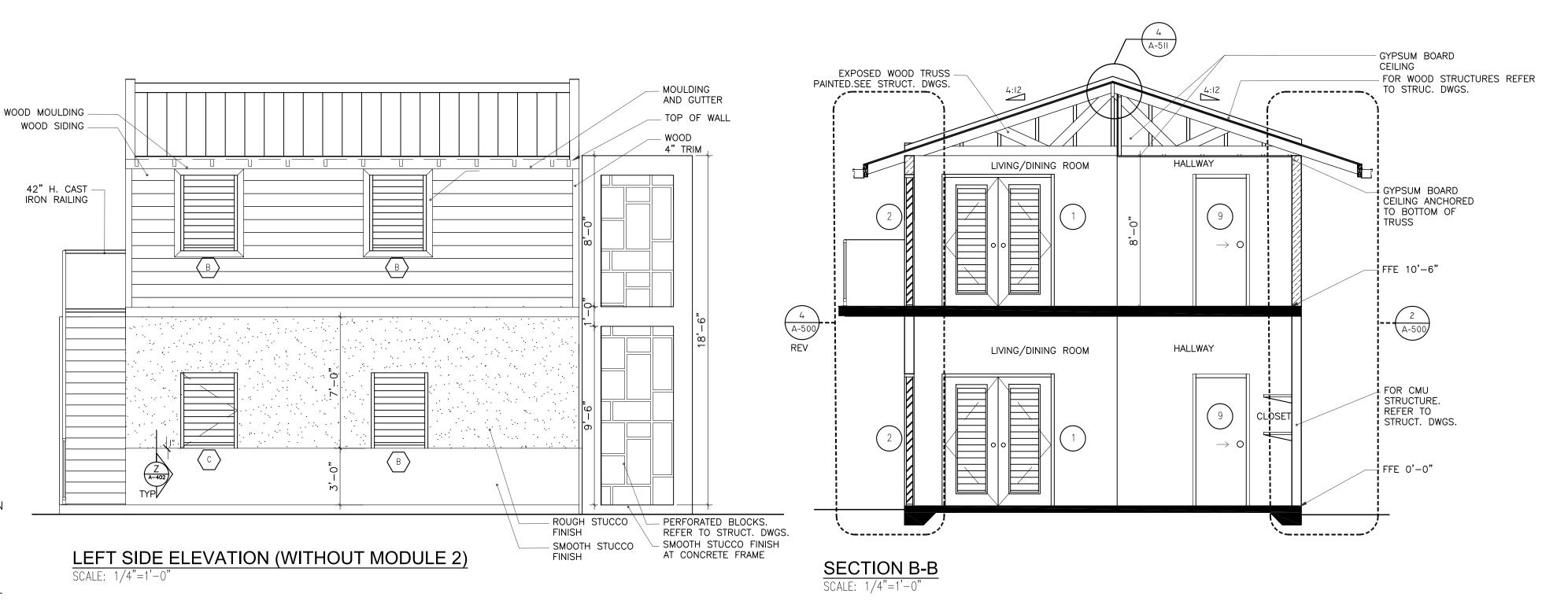
- 1. ALL WORK SHALL BE DONE IN STRICT ACCORDANCE WITH ALL APPLICABLE LOCAL, STATE, AND FEDERAL BUILDING CODES AND/OR REGULATIONS.
- 2. ALL WORK SHALL BE DONE IN A MANNER CONSISTENT WITH THE HIGHEST STANDARDS OF THE RESPECTIVE TRADES.
- 3. THE CONTRACTOR SHALL VISIT THE SITE AND BECOME FAMILIAR WITH THE EXISTING CONDITIONS BEFORE BIDDING.
- 4. THE CONTRACTOR SHALL VERIFY ALL FIELD DIMENSIONS BEFORE PROCEEDING WITH THE WORK AND COMPLIANCE WITH ZONING REGULATIONS.
- 5. THE CONTRACTOR SHALL ABIDE BY ALL REQUIREMENTS OF THE OWNER WITH RESPECT TO CONSTRUCTION SCHEDULING, COORDINATION, TEMPORARY CONSTRUCTION, UTILITIES, ETC.
- 6. THE CONTRACTOR SHALL NOT SCALE THESE CONSTRUCTION DOCUMENTS. IN THE EVENT THAT THE CONTRACTOR DOES SCALE THESE DOCUMENTS, IT SHALL BE AT THEIR OWN RISK.
- 7. ALL MATERIALS, PRODUCTS, AND UNITS, SHALL BE INSTALLED PER MANUFACTURER'S RECOMMENDATIONS AND INSTRUCTIONS.
- 8. INSTALLATION OF ALL MATERIALS AND/OR UNITS TO BE SELECTED BY, SUPPLIED BY, AND/OR INSTALLED BY THE OWNER SHALL BE SCHEDULED AND COORDINATED BY THE CONTRACTOR TO MAINTAIN THE CONSTRUCTION SCHEDULE. PRIOR TO THE COMMENCEMENT OF THE WORK, THE CONTRACTOR SHALL NOTIFY THE OWNER OF ALL QUANTITIES OF OWNER SUPPLIED MATERIALS AND/OR UNITS NOT SPECIFICALLY CALLED OUT IN THESE CONSTRUCTION DOCUMENTS. THE CONTRACTOR SHALL NOTIFY THE OWNER OF REQUIRED DELIVERY DATES OF OWNER SUPPLIED MATERIALS AND UNITS.
- 9. ALL FINISH PAINT SHALL BE APPLIED OVER A COMPATIBLE FACTORY OR FIELD APPLIED PRIMER.
- 10. THE CONTRACTOR SHALL PROTECT ALL EXISTING AND ADJACENT AREAS AT ALL TIMES DURING CONSTRUCTION. ANY AREA DAMAGED OR AFFECTED BY CONSTRUCTION SHALL BE PATCHED, REPAIRED, OR REPLACED AS REQUIRED TO MATCH EXISTING OR ADJACENT AREAS AT THE CONTRACTOR'S EXPENSE.
- 11. THE CONTRACTOR SHALL YIELD TO THE OWNER AND THEIR VISITORS AT ALL TIMES.
- 12. THE CONTRACTOR SHALL NOT DISRUPT THE BUILDING OR OPERATIONS WITHOUT PRIOR SCHEDULING AND APPROVAL FROM THE OWNER.
- 13. NOT USED
- 14. IF A CONFLICT OCCURS ON THESE CONSTRUCTION DOCUMENTS AND/OR THE SPECIFICATIONS, THE CONTRACTOR SHALL BID THE HIGHER QUALITY AND/OR QUANTITY.
- 15. AIR CONDITIONING NOT INCLUDED. HOUSE OWNER SHALL DECIDE IF REQUIRED AND INSTALLATION WILL BE DONE BY OTHERS AFTER HOUSE IS BUILT.
- 16. ALL WORK THAT IS EITHER IMPLIED OR REASONABLY INFERRED BY THE CONTRACT DOCUMENTS, DRAWINGS, AND SPECIFICATIONS SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.
- 17. ALL DRAWINGS ARE DIRECTED TO THE ATTENTION OF THE CONTRACTOR, AND THE INCLUSION OF ANY WORK BY MENTION, NOTE, DETAIL, OR IMPLICATION, HOWEVER BRIEF, MEANS THAT THE CONTRACTOR SHALL PROVIDE AND INSTALL THE SAME.
- 18. ALL WORK PERFORMED SHALL INCLUDE ALL APPURTENANCES AND APPARATUS NORMALLY DEEMED TO BE PART OF A COMPLETE PACKAGE WITHIN THE DEFINITIONS OF NORMAL INDUSTRY STANDARDS.
- 19. ALL DIMENSIONS ARE CLEAR (FINISH TO FINISH). ALL FINAL DIMENSIONS AND LAYOUT SHALL BE VERIFIED WITH AND APPROVED BY THE OWNER AS REQUIRED BEFORE PROCEEDING WITH THE WORK.
- 20. ROOF WATERPROOFING TO BE LIQUID APPLIED MEMBRANE SYSTEM ON CONCRETE ROOFS, OR STANDING SEAM OR GALVANIZED CORRUGATED PANELS. ALL ROOFING DESIGNS BY OTHERS.
- 21.ONE BEDROOM WINDOW SHOULD BE CASEMENT TYPE JALOUSIE TO SWING IN THE DIRECTION OF EGRESS PER CODE
- 22.NOT USED
- 23. THE CONTRACTOR ASSUMES RESPONSIBILITY FOR CONSTRUCTION MEANS, METHODS, MATERIALS, TECHNIQUES, PROCEDURES, SEQUENCES, OR SCHEDULING IN CONNECTION WITH THIS WORK.
- 24. NOT USED
- 25. THE CONTRACTOR SHALL REMOVE ALL RUBBISH AND WASTE MATERIAL PERIODICALLY AND KEEP THE JOB SITE BROOM CLEAN AT ALL TIMES. ALL WASTE MATERIAL SHALL BE DISPOSED OF PROPERLY.
- 26. ALL MECHANICAL, ELECTRICAL, PLUMBING FIXTURES AND EQUIPMENT SHOWN IN THE ARCHITECTURAL CONSTRUCTION DOCUMENTS, ARE SHOWN FOR LOCATION PURPOSES ONLY. ALL SPECIFICATIONS, ETC. SHALL BE PROVIDED UNDER SEPARATE COVER.

SAFE ROOM NOTES

SAFE ROOM SIZE SHOWN IN THIS PLAN SET IS BASED UPON A 7 PERSON OCCUPANCY. PER FEMA P-320 REQUIREMENTS 7 S.F. OF SPACE IS REQUIRED PER OCCCUPANT. FOR VARYING OCCUPANCY REQUIREMENTS CONFIRM SAFE ROOM SIZE REQUIREMENTS WITH FEMA P-320, FEMA 361, AND ICC 500.

SEE FEMA P-361 AND ICC-500 FOR ADDITIONAL SAFE ROOM REQUIREMENTS SUCH AS FIRST AID KITS, OPERATION, AND MAINTENANCE REQUIREMENTS. ONCE THE SAFE ROOM IS CONSTRUCTED IT SHOULD BE REGISTERED WITH LOCAL FIRST RESPONDERS (E.G., POLICE, FIRE, RESCUE ORGANIZATIONS).


NOT ALL SAFE ROOM OPENINGS ARE SHOWN IN THESE DRAWINGS. ESTABLISH AND VERIFY ALL OPENINGS AND INSERTS FOR MECHANICAL, PLUMBING, AND ELECTRICAL WITH APPROPRIATE TRADES, DRAWINGS, AND SUBCONTRACTORS PRIOR TO CONSTRUCTION. OPENINGS MAY REQUIRE ADDITIONAL REINFORCING OR SUPPORTS AS SHOWN ON TYPICAL DETAILS. OPENINGS NEED TO BE PROTECTED PER ICC 500.


COMPLETE SAFE ROOM INSPECTION REQUIREMENTS SHALL BE AS DIRECTED BY THE LOCAL BUILDING

SAFE ROOM VENTILATION IS TO BE PROVIDED. VERIFY SIZE REQUIREMENTS BASED ON SAFE ROOM SIZE, OCCUPANCY, AND ICC 500 SPECIFICATIONS. CONSULT LOCAL BUILDING OFFICIAL AND REFER TO ICC 500-14 FOR VENTILATION OPENING PROTECTION.

THE SELECTED DOOR AND WINDOW PROTECTION SHALL MEET THE DESIGN CRITERIA OF 2015 FEMA P-361 AND 2014 ICC-500. ALL DOORS AND WINDOW PROTECTIONS SHALL BE A TESTED ASSEMBLY AND INSTALLED PER MANUFACTURES RECOMMENDATIONS.

OWNER HAS THE OPTION TO ELIMINATE SAFE ROOM WINDOW IF THIS ROOM WILL NEVER BE USED AS A BEDROOM.

CONSULTANT:

CLIENT:

PROJECT NAME:

TWO STORY CMU AND 2ND FL WOOD HOME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

No. Date Description

PROFESSIONAL SEALS:

SHEET TITLE:

ISSUE LOG

PROTOTYPE 4 - SECTIONS & ELEVATIONS

SHEET INFORMATION:

JOB No. Date Issued: 05/08/20

Drawn By:
Checked By:
QC Review:

Phase:

Sheet Number:

A-401

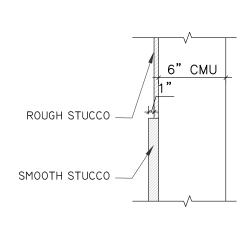
FINI	SH SCHEDULE MAIN	MOD)ULE	(1ST	FL.)
NO.	NAME	FLOOR	BASE	CEILING	WALL
100	BALCONY	F1		C1	W1
101	LIVING/DINING ROOM	F1		C1	W1
102	BEDROOM	F1		C1	W1
103	HALL	F1		C1	W1
104	BATHROOM	F1, F2		C1	W1,W2
105	KITCHEN	F1		C1	W1
106	SAFE ROOM	F1		C1	W1

	FINISH SCHEDULE N	10DU	LES	1&2	
NO.	NAME	FLOOR	BASE	CEILING	WALL
M1-1	LIVING ROOM	F1		C3	W1
M1-2	BEDROOM	F1		C2	W1
M2-1	HALLWAY	F1		C2	W1
M2-2	BEDROOM	F1		C2	W1
M2-3	BATHROOM	F1, F2		C2	W1,W2

FINIS	SH SCHEDULE MAIN	MOD	ULE	(2ND	FL.)
NO.	NAME	FLOOR	BASE	CEILING	WALL
100	BALCONY	F1	B1	C1	W1
101	LIVING/DINING ROOM	F1	B1	C3	W1
102	BEDROOM	F1	B1	C2	W1
103	HALL	F1	B1	C2	W1
104	BATHROOM	F1, F2	B1	C2	W1,W2
105	KITCHEN	F1	B1	C2	W1
106	SAFE ROOM	F1		C1	W1

FLOOR FINISHES:

F1 — Polished concrete with satin sealer


F2 - Shower floor and 4" high shower curb to be mosaic ceramic tile, 2x2, color white, grout silver color.

BASE: B1 — Vinyl Base, color Gray

CEILING: C1 — Concrete, smooth plaster painted white C2 - Gypsum board, firecode, $\frac{1}{2}$ OR $\frac{5}{8}$ "

C3 - Exposed wood trusses painted white

WALLS: W1 — Concrete, smooth plaster painted white W2 - Ceramic tile wainscot, 4"x4", color white

WALL DETAIL - Z N.T.S.

JALOUSIE: 4", ADD ALUM. SCREEN

COLOR: GRAY

JALOUSIE: 4", ADD ALUM. SCREEN

with silver grout at shower walls (3), to 72" high TYPE I TYPE TYPE IV DOOR ELEVATIONS DOOR SCHEDULE-PROTOTYPE 4 MATERIAL HARDWARE BY MANUFACTURER (ENTRANCE) 7'-0" 6'-0" 3'-0" 3′-0″ 3′-0″ COLOR: GRAY; FRAME: ALUM. STOREFRONT; DOOR 6' X 8' H. ALUMINUM 7'-0" 12'-0" HARDWARE BY MANUFACTURER (ENTRANCE) SAFETY ROOM DOOR 7'-0" 3'-4" HOLLOW METAL FIXED FULL LOUVER HARDWARE BY MANUFACTURER (COLOR GRAY) TYPE I TYPE II TYPE II FLUSH DOOR WOOD & 7'-0" 3'-0" WINDOW ELEVATIONS WOOD FRAME SEMI-SOLID WOOD: CEDAR, PAINT GRAY FLUSH SLIDING 8'-9 1/4" 8'-0" WOOD BYPASS CL. DOOR & ROOM 102 WINDOW SCHEDULE PROTOTYPE 1 HARDWARE: JOHNSON HARDWARE 200SD FLUSH SLIDING 8'-0" 7'-8 3/8" WOOD

COLOR: GRAY PAINT

HARDWARE: JOHNSON HARDWARE 200SD

COLOR: GRAY PAINT SECURITY ENTRANCE DOOR

HARDWARF: PRIVACY

WOOD: CEDAR. PAINT GRAY

ARDWARE BY MANUFACTURER (COLOR GRAY)

1. Install doors as per the FMA/AMMA 200 and 400 guidelines.

5'-2 5/8"

3'-0"

3'-0"

WOOD

ALUMINUM

WOOD &

WOOD FRAME

8'-0"

8'-0"

7'-0"

BYPASS CL. DOOR

FLUSH SLIDING

BYPASS CL. DOOR

FLUSH DOOR

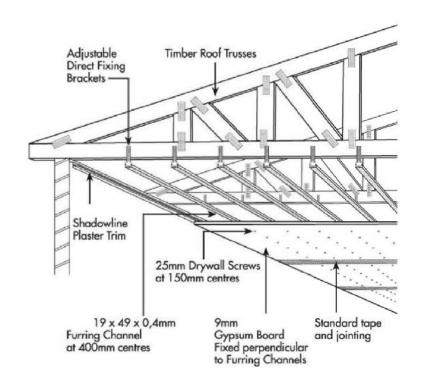
POCKET DOOR

SEMI-SOLID

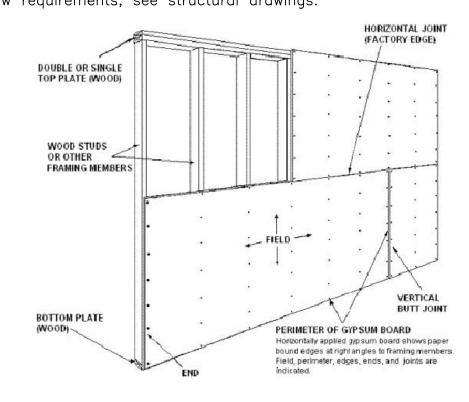
COLOR: GRAY ALUMINUM JALOUSIE 4'-0" 3'-0" 3'-0" JALOUSIE: 4", ADD ALUM. SCREEN 1. Window waterproofing: Provide 100% Silicone caulking around the interior and exterior perimeter of each window, eq. or similar to Sikaflex 211. Install as per the FMA/AMMA 200 and 400 guidelines. 2. For safe room window requirements, see structural drawings.

ALUMINUM JALOUSIE

ALUMINUM JALOUSIE


4'-0"

4'-0"


6'-0"

3'-0"

MATERIAL A.F.F. (C)

TYP. INST. DETAIL FOR GWB CEILINGS ON WOOD TRUSSES

TYPICAL INSTALLATION DETAIL FOR GWB ON WOOD STUDS

BATHROOM SCHEDULE

Water Closet: Cadet 3 FloWise Tall Height 2—Piece 1.28 GPF Single Flush High Efficiency Elongated Toilet in

White with Slow Close Seat by American Standard Lavatory sink: Elmbrook 24 in. Pedestal Sink in White with 4 in. Centerset Faucet Holes by Kohler

Lavatory faucet: Elmbrook 4 in. Centerset 2—Handle Bathroom Faucet in Polished Chrome by Kohler

Lavatory mirror: 20 in. x 26 in. Recessed or Surface—Mount Bathroom Medicine Cabinet with Beveled Mirror

in Silver by Pegasus

Accessories: Serano 5—Piece Bathroom Accessory Set in Chrome by Kingston Brass Shower: Centa 47 in. 1 Jet Shower Panel with Hand Shower in Stainless Steel by Mediterraneo Shower drain: PVC Shower Drain with Chrome Barrel and Square 4-3/16 in. Chrome Strainer by Oatey

Shower curtain rod: Expanse Wall Mount Shower Rod in Brushed Stainless by Kohler

- BATHROOM NOTES: 1. Bathroom equipment and accessories to be equal or similar to the specified above. Variations to be
- submitted to the Architect for approval.
- 2. Bathroom equipment and accesories supplier: The Home Depot 3. Bathroom walls to be painted white (eggshell finish).
- 4. For bathroom wainscot and shower tiles see finish schedule.

KITCHEN SCHEDULE

Sink: Handcrafted All-in-One Drop-In Stainless Steel 25 in. x 22 in. x 9 in. Single Bowl Kitchen Sink with

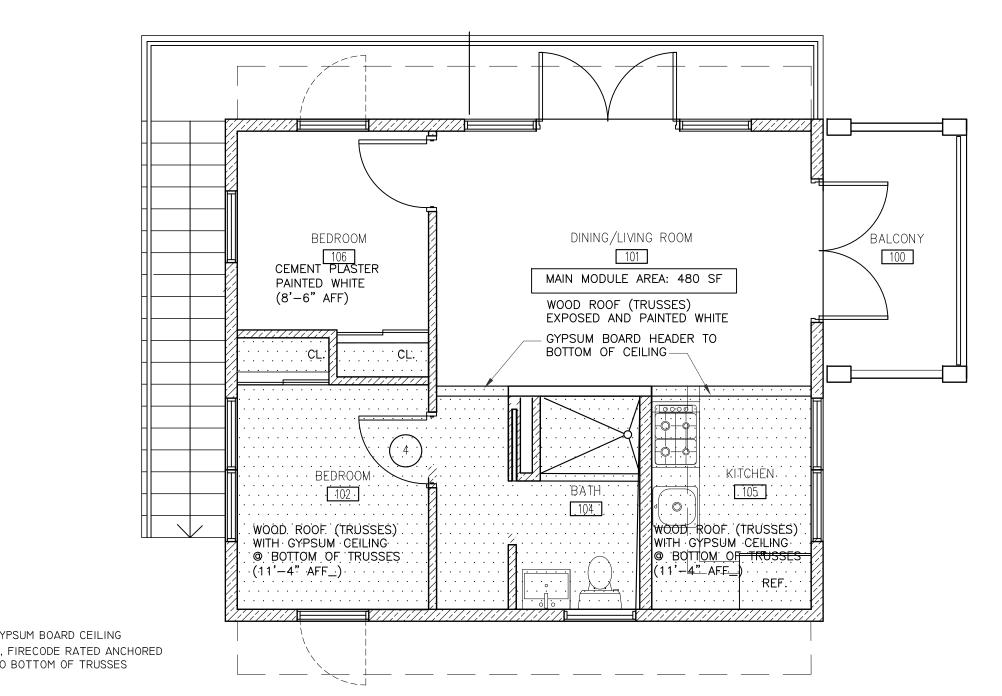
Tray and Drain by Akdy

Sink Faucet: Fairbury Single-Handle Pull-Down Sprayer Kitchen Faucet in Stainless Steel by American Standard

Cabinets: Wood cabinets, laminated by others. Submit shop drawings to architect for approval. Cooking range: N.I.C.

Refrigerator: N.I.C. Kitchen Hood: RL6200 Series 30 in. Ductless Under Cabinet Range Hood with Light in Stainless Steel by NuTone

KITCHEN NOTES:


- 1. Kitchen equipment and accessories to be equal or similar to the specified above. Variations to be submitted to the Architect for approval.
- 2. Kitchen equipment and accesories supplier: The Home Depot
- 3. Kitchen walls to be painted white (eggshell finish).
- 4. Kitchen backsplash tiles: Ceramic tiles 6x6, color gray. Submit to Architect for approval

FINISHES NOTES

- 1. All floor finishes must be level and smooth
- 2. Contractor must consult with the Architect a/o Owner for any material changes from the specified in the contract documents.
- 3. When required by Owner, Contractor must submit one sample of the finishes to the Owner for approval. Sample must conform with the specifications in the contract
- documents and colors selected by the Architect and/or Owner. 4. Whenever a color is not selected or indicated in the contract documents, it must be
- consulted with the Owner for selection. 5. Interior Walls paints shall be equal or similar to Behr Premium Plus Ultra (paint and primer) in eggshell finish, white, unless otherwise indicated by the Owner. Personal
- Colors to be selected by the Owner. 6. Ceiling paint to be equal or similar to Behr Premium Plus Ultra Stain Blocking Ceiling Paint in white, unless otherwise indicated by the Owner.
- 7. Exterior paint to be equal or similar to Behr Premium Plus Ultra Exterior Flat Enamel, color white unless otherwise indicated by the Owner. Personal Colors to be selected by Owner.
- 8. Bathrooms wall and floor finishes to be selected and provided by the contractor, unless otherwise indicated by the Owner.
- 9. Kitchen finishes to be selected by the Owner. Kitchen design and construction shop drawings to be provided by Others to the Owner. Contractor must coordinate with Kitchen supplier. Kitchen supplier must verify all the dimensions prior to the start of the kitchen cabinetry construction. Architect will not be responsible for any discrepancies in the dimensions not verified by the supplier.
- 10.Contractor must verify on field all the finishes quantities and areas before the material is purchased. Contractor must provide the exact quantities to the Owner so he can get quotes on the material finishes if required.
- 11.Closets to have one metal shelf and a clothes rod installed on its interior.
- 12.Gypsum board ceilings to be $\frac{1}{2}$ " or $\frac{5}{8}$ " Firecode panel by USG. Install on the bottom
- 13.Paint wood exterior walls white. Submit exterior wood quality paint type to Architect for approval.

GYPSUM BOARD NOTES:

- 1. Provide Type X gypsum wallboard, 5/8" in thickness ("5/8" type X wallboard"), is manufactured for use as one component of an assembly/system (such as a wall) where a fire resistance rating is required in a residential, structure by the applicable building code.
- 2. 5/8" type X wallboard is required to be manufactured in accordance with established ASTM standards defining type X wallboard as that which provides not less than one-hour fire resistance when tested in specified building assemblies/systems in a laboratory setting under certain controlled conditions and pursuant to certain ASTM procedures

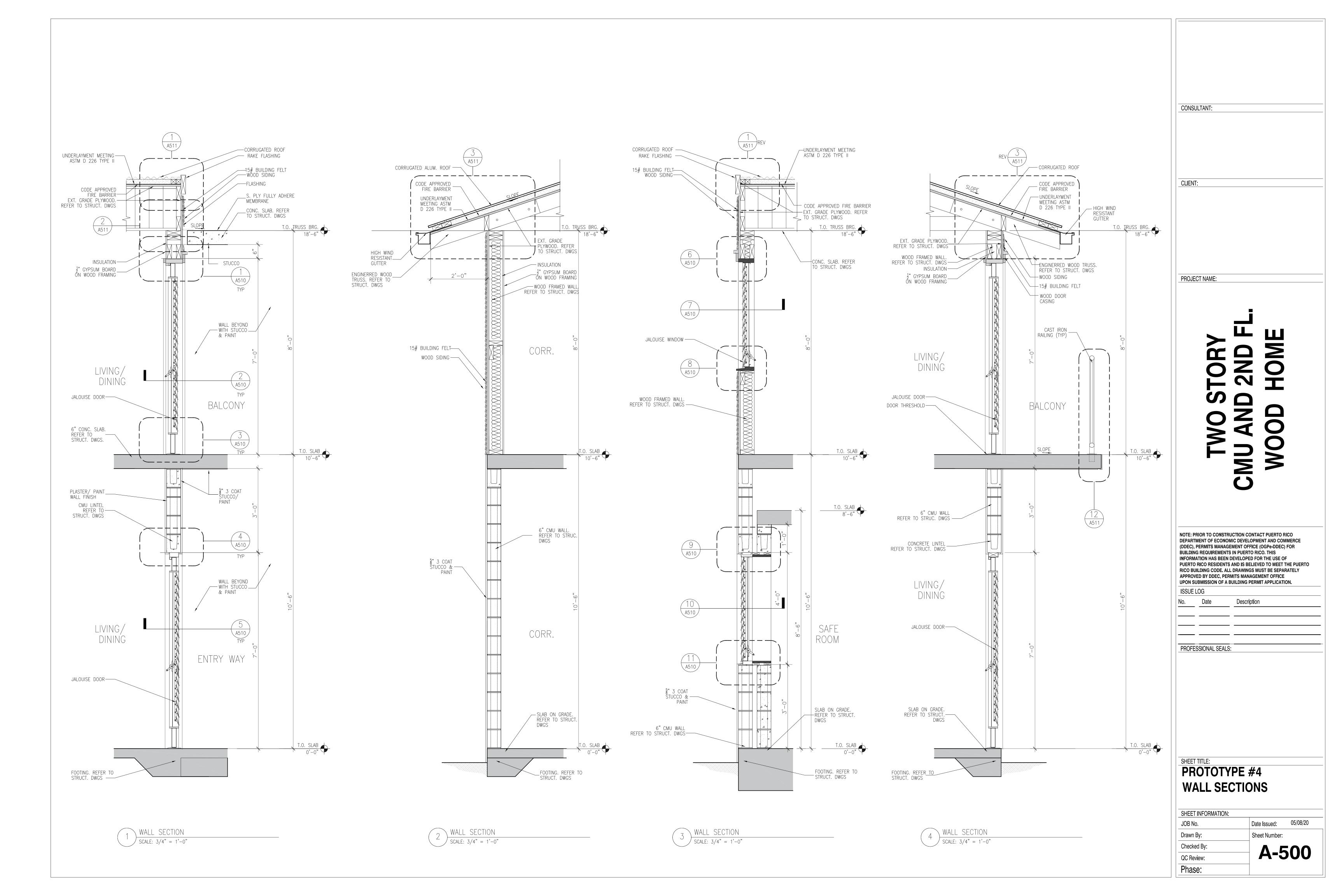
MAIN MODULE HOUSE (2nd FL)REFLECTED CEILING PLAN SCALE: 1/4"=1'-0"

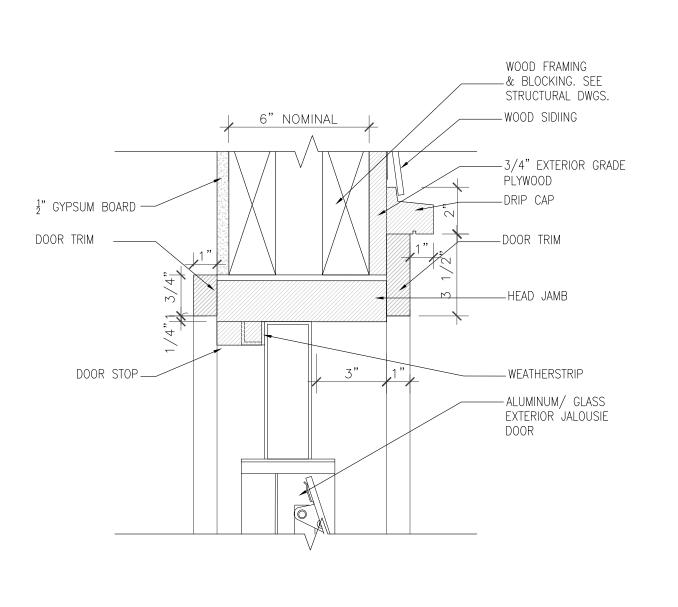
GYPSUM BOARD CEILING

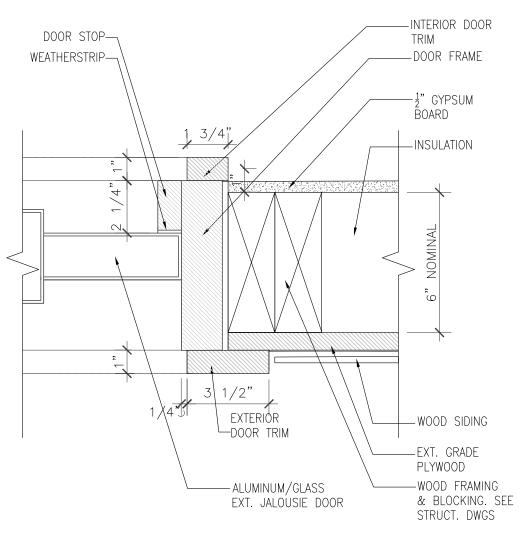
O BOTTOM OF TRUSSES

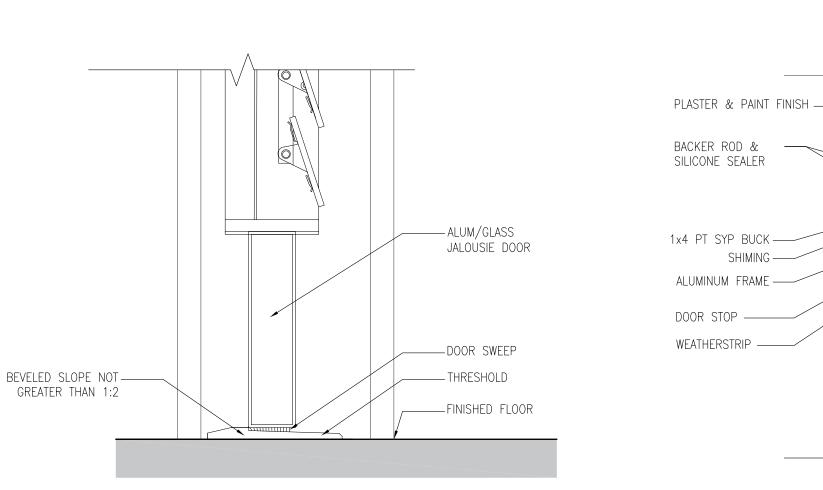
PROJECT NAME:

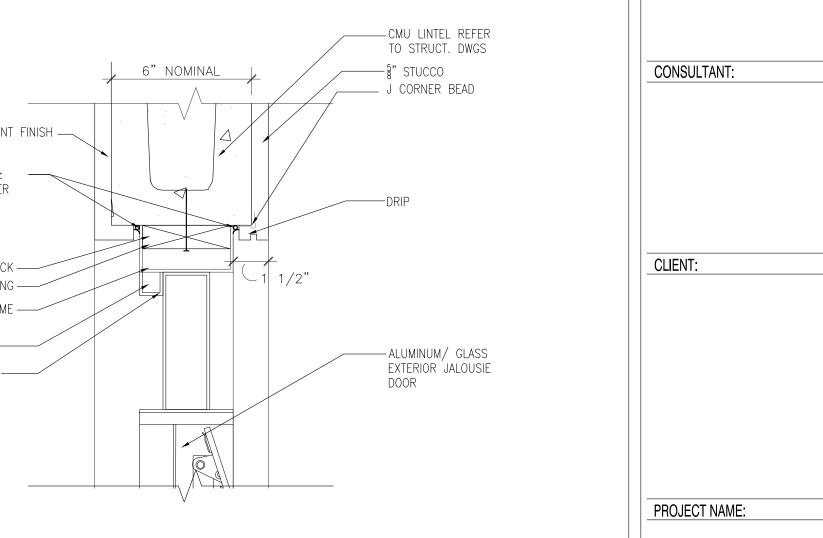
CONSULTANT:

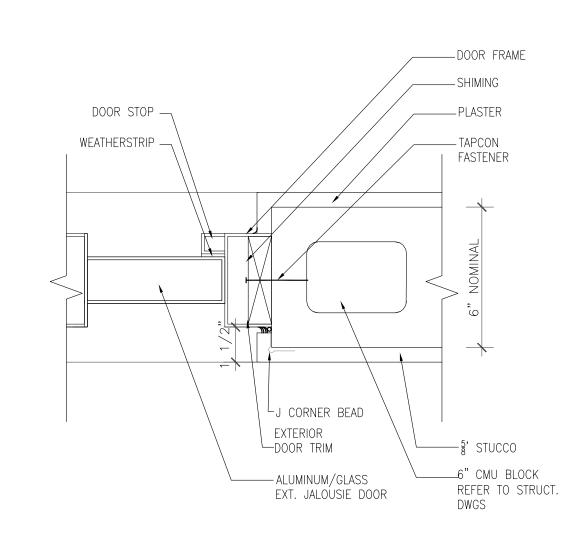

CLIENT:

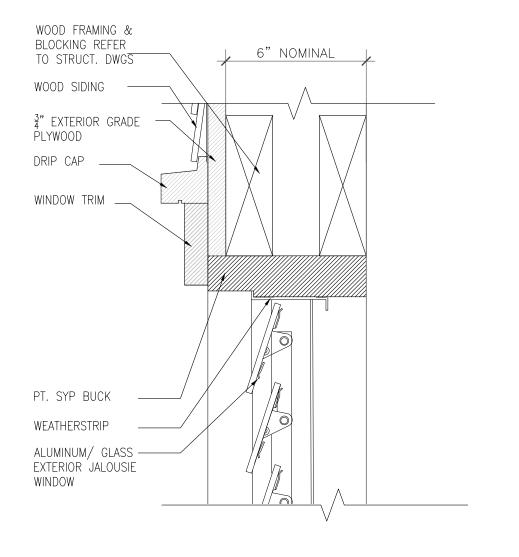

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION

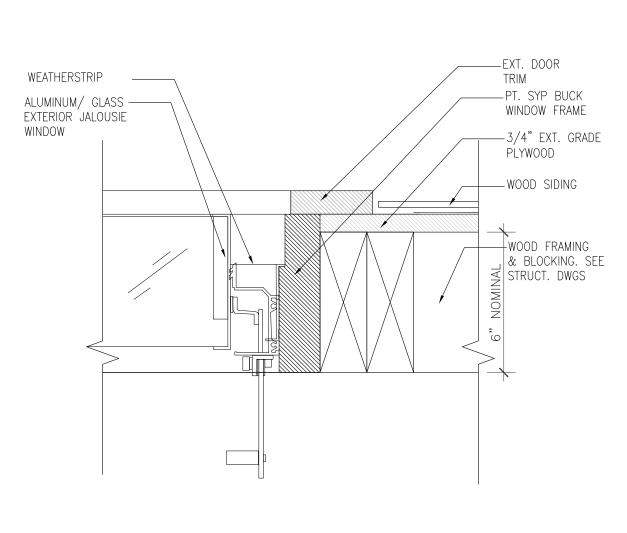

ISSUE	LUG	
No.	Date	Description
		_
	ESSIONAL SEALS:	

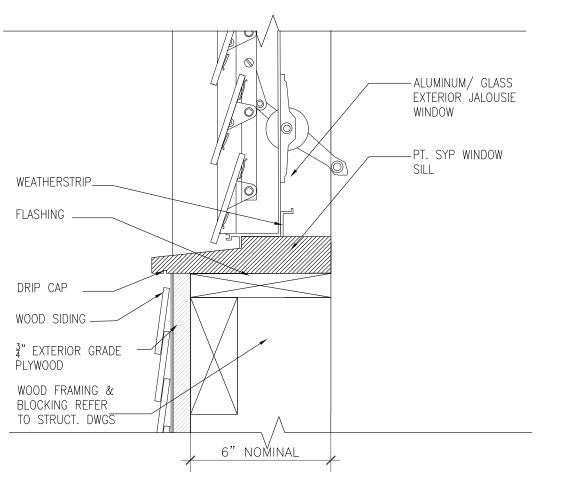

SHEET TITLE: PROTOTYPE 4 - DOOR, WINDOWS, FINISHES, REF. CLG. PLAN


SHEET INFORMATION:	
JOB No.	Date Issued: 05/08/20
Drawn By:	Sheet Number:
Checked By:	A 400
QC Review:	A-402
Phase:	





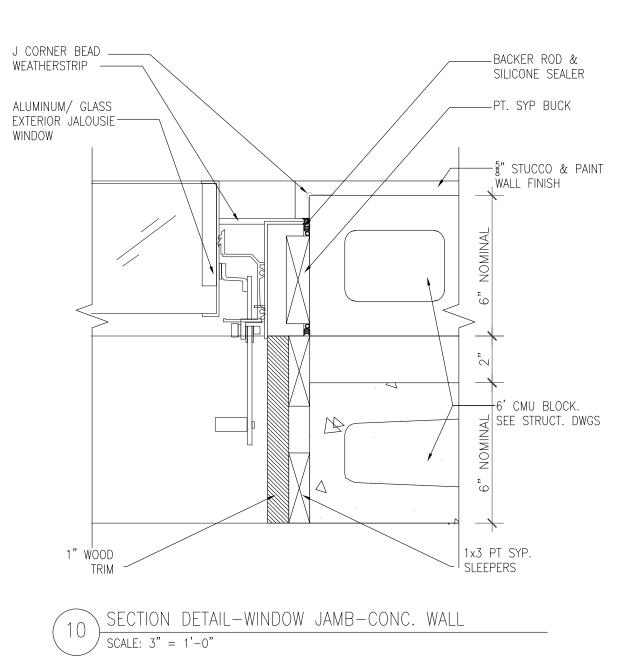


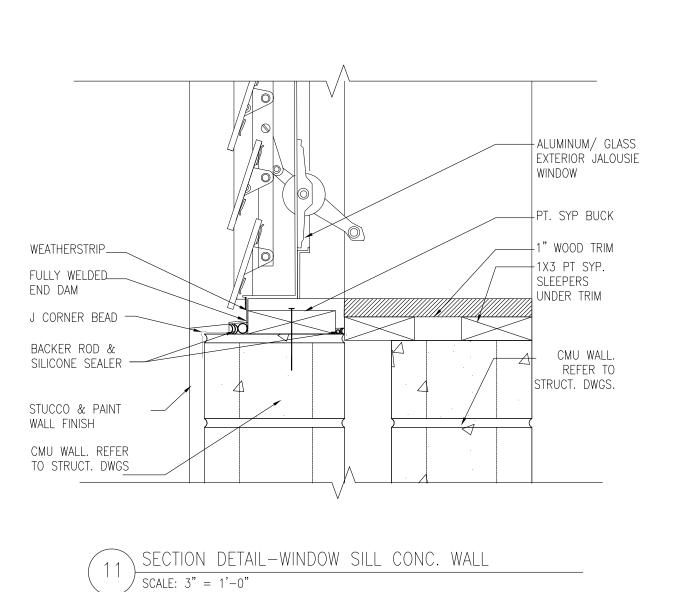

SECTION DETAIL-DOOR THRESHOLD -CONC. FLOOR $\int SCALE: 3" = 1'-0"$

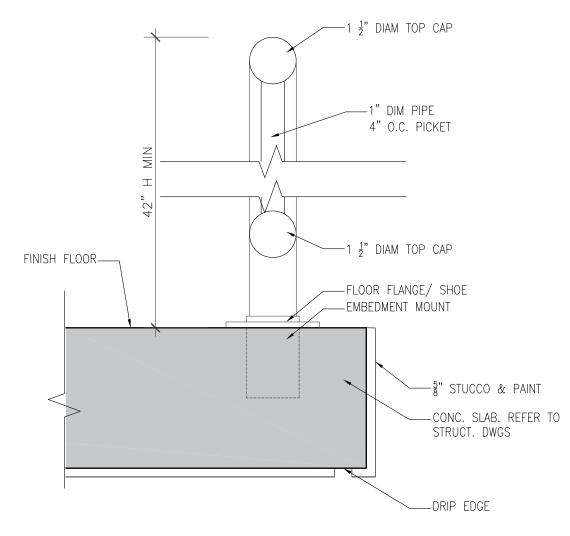
SECTION DETAIL-DOOR HEADER- CMU WALL $\int SCALE: 3" = 1'-0"$



SECTION DETAIL-DOOR JAMB- CONC WALL SCALE: 3'' = 1'-0''


SECTION DETAIL-WINDOW JAMB-WOOD WALL FRAME $\int SCALE: 3" = 1'-0"$


SECTION DETAIL-WINDOW SILL-WOOD WALL FRAME $\int SCALE: 3" = 1'-0"$



SECTION DETAIL-WINDOW HEADER-CONC. WALL

 $9) \frac{\text{SCALE: } 3" = 1'-0"}{\text{SCALE: } 3" = 1'-0"}$

SECTION DETAIL—CAST IRON RAILING

 $\int SCALE: 3" = 1'-0"$

PROTOTYPE #4-DETAILS DOORS AND WINDOWS

> SHEET INFORMATION: Date Issued: 05/08/20 JOB No. Drawn By: Sheet Number: Checked By: A-510

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO

BUILDING REQUIREMENTS IN PUERTO RICO. THIS

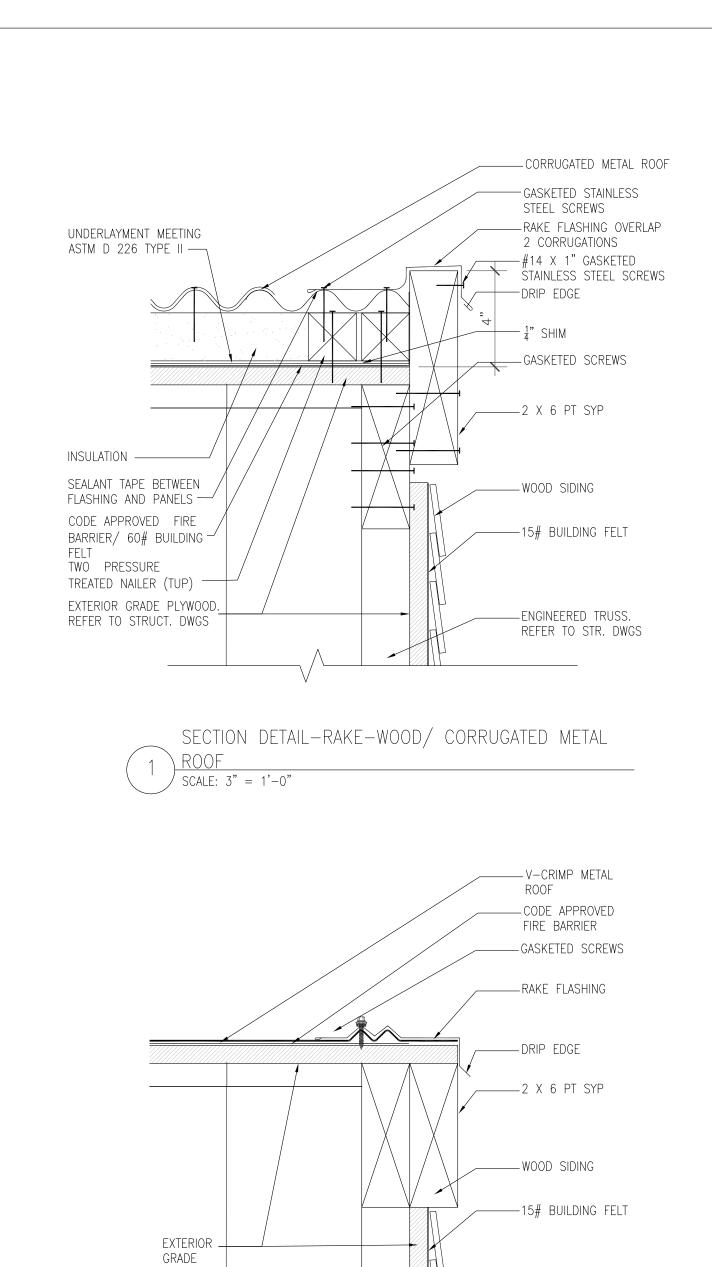
ISSUE LOG

PROFESSIONAL SEALS:

SHEET TITLE:

QC Review:

Phase:


INFORMATION HAS BEEN DEVELOPED FOR THE USE OF

DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR

PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO

Description

RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ENGINEERED TRUSS.
REFER TO STRUCT. DWGS

—CORRUGATED ROOF

—METAL FLASHING WITH

HEMMED EDGES

CODE APPROVED

FIRE BARRIER

SCREW

— PRESSURE TREATED `

NAILER FASTENER

ENGINEERED TRUSS.REFER TO STRUCT.

SPACER AT EACH 2X4

— FLASHING FASTERNER GASKETED STAINLESS

SECTION DETAIL-RAKE-WOOD/ V-CRIMP METAL ROOF

PLYWOOD

FOAM CLOSURES—

TREATED NAILER (TYP)

PLYWOOD. REFER TO

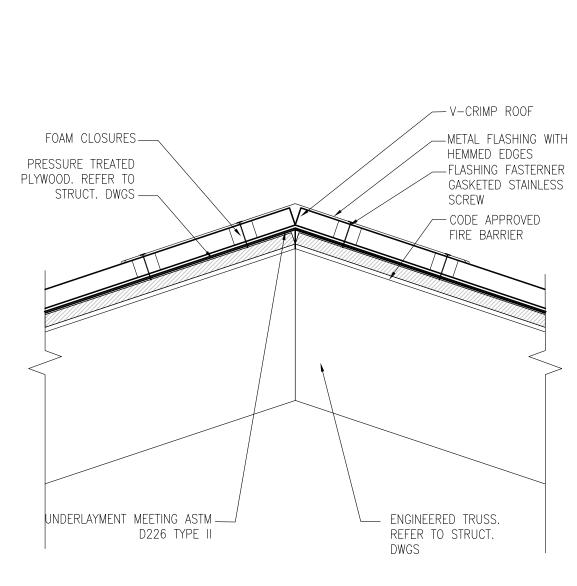
PRESSURE TREATED —

STRUCT. DWGS

PRESSURE —

 $\int SCALE: 3" = 1'-0"$

NAILER FASTERNER —


D226 TYPE II

SECTION DETAIL AT ROOF RIDGE-CORRUGATED

STAINLESS STEEL SCREWS

UNDERLAYMENT MEETING ASTM ——

SCALE: 3'' = 1'-0''

EXTERIOR GRADE \downarrow

ENGINEERED TRUSS.

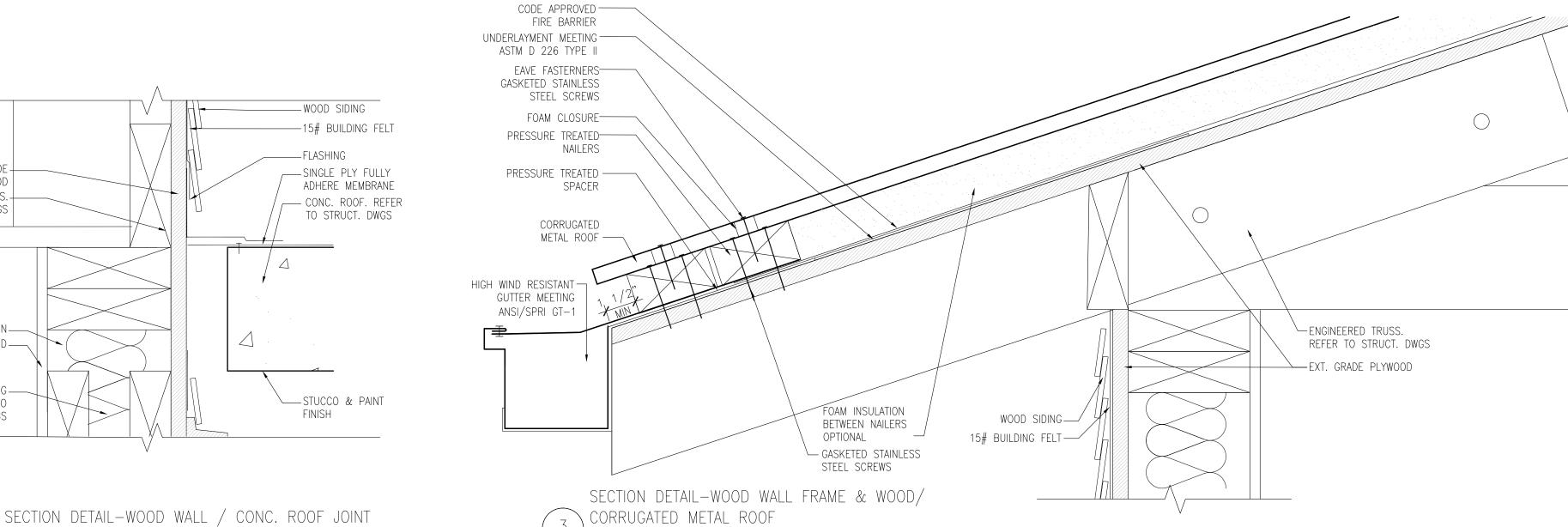
REFER TO STRUCT. DWGS

PLYWOOD

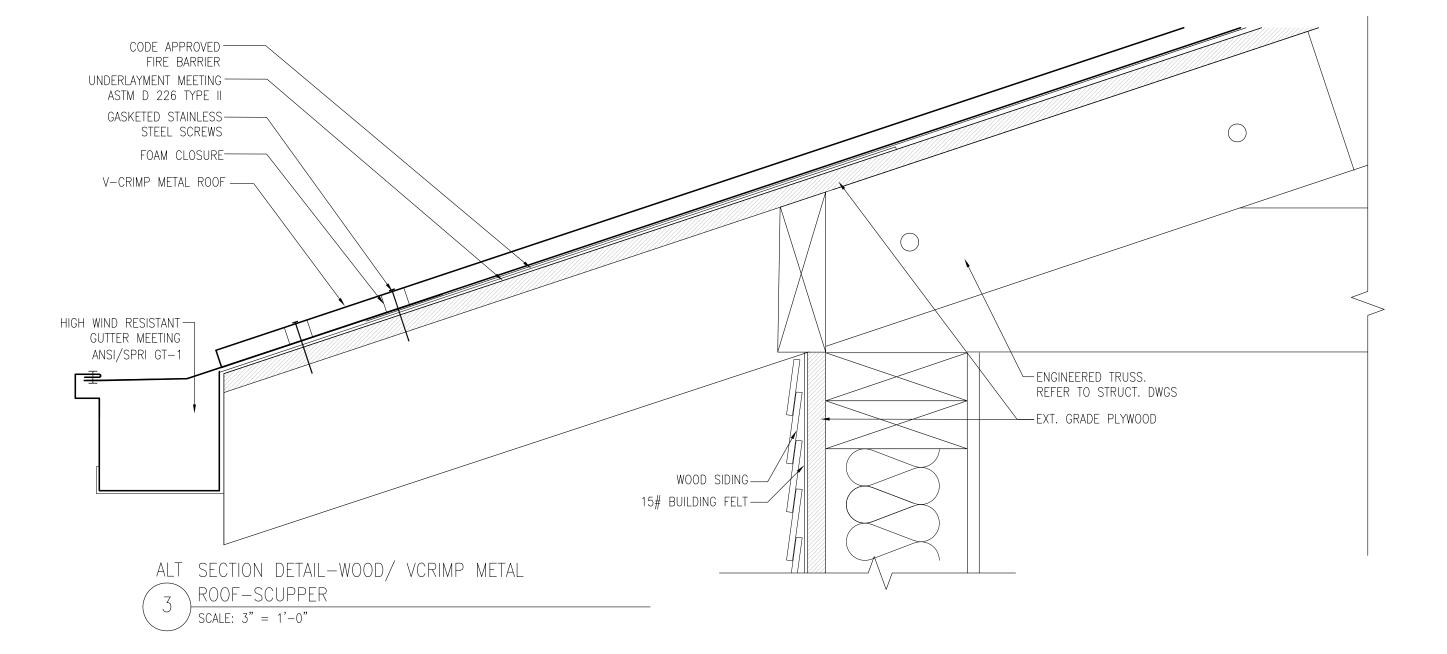
INSULATION —

GYPSUM BOARD—

WOOD FRAMING-


STRUCT. DWGS

REFER TO


ALT SECTION DETAIL AT ROOF RIDGE-V-CRIMP METAL

ROOF

SCALE: 3" = 1'-0"

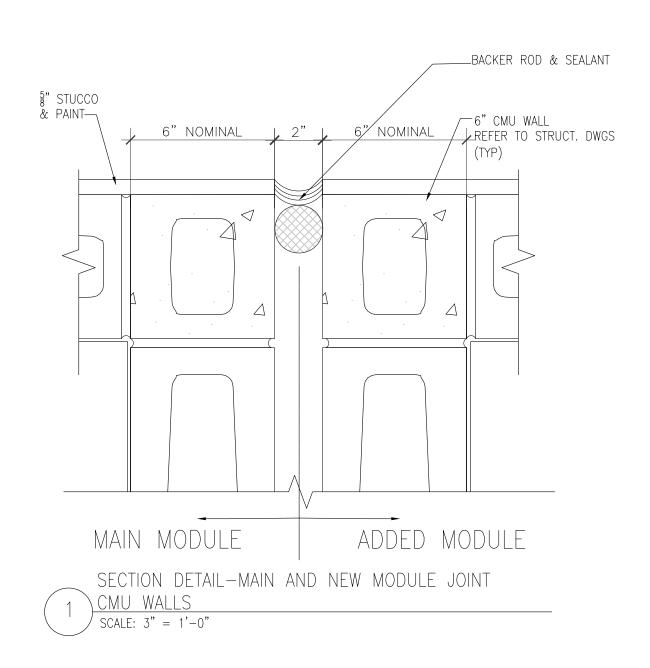
SCALE: 3" = 1'-0"

CLIENT:

PROJECT NAME:

TWO STORY
CMU AND 2ND FL.
WOOD HOME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPERATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.


No. Date Description

PROTOTYPE #4
ROOF DETAILS

SHEET INFORMATION:

PROFESSIONAL SEALS:

SHEET INFORMATION:	
JOB No.	Date Issued: 05/08/20
Drawn By:	Sheet Number:
Checked By:	A 514
QC Review:	A-511
Phase:	

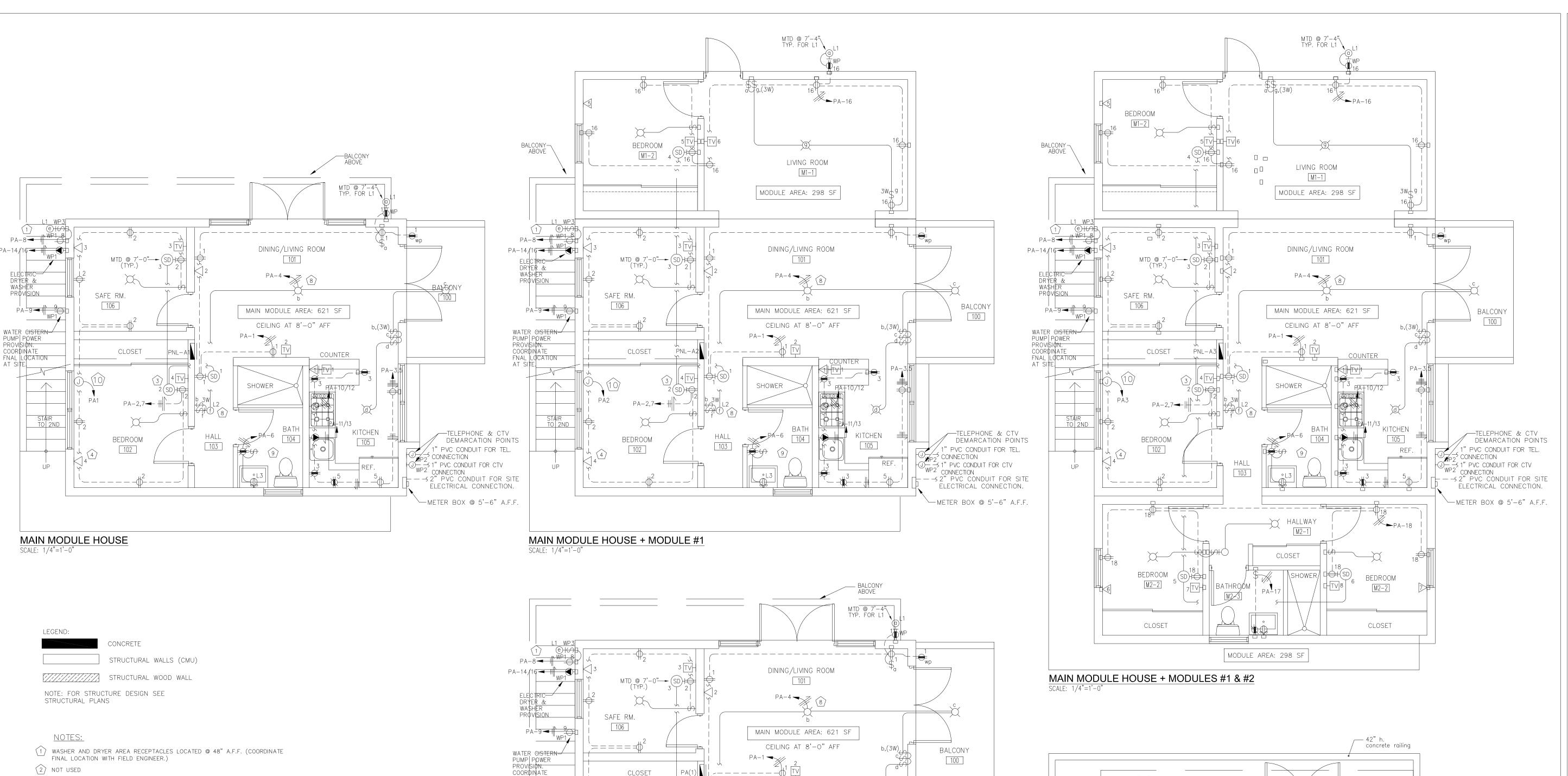
CONSULTANT:

CLIENT:

PROJECT NAME:

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG


	No.	Date	Description

PROFESSIONAL SEALS:

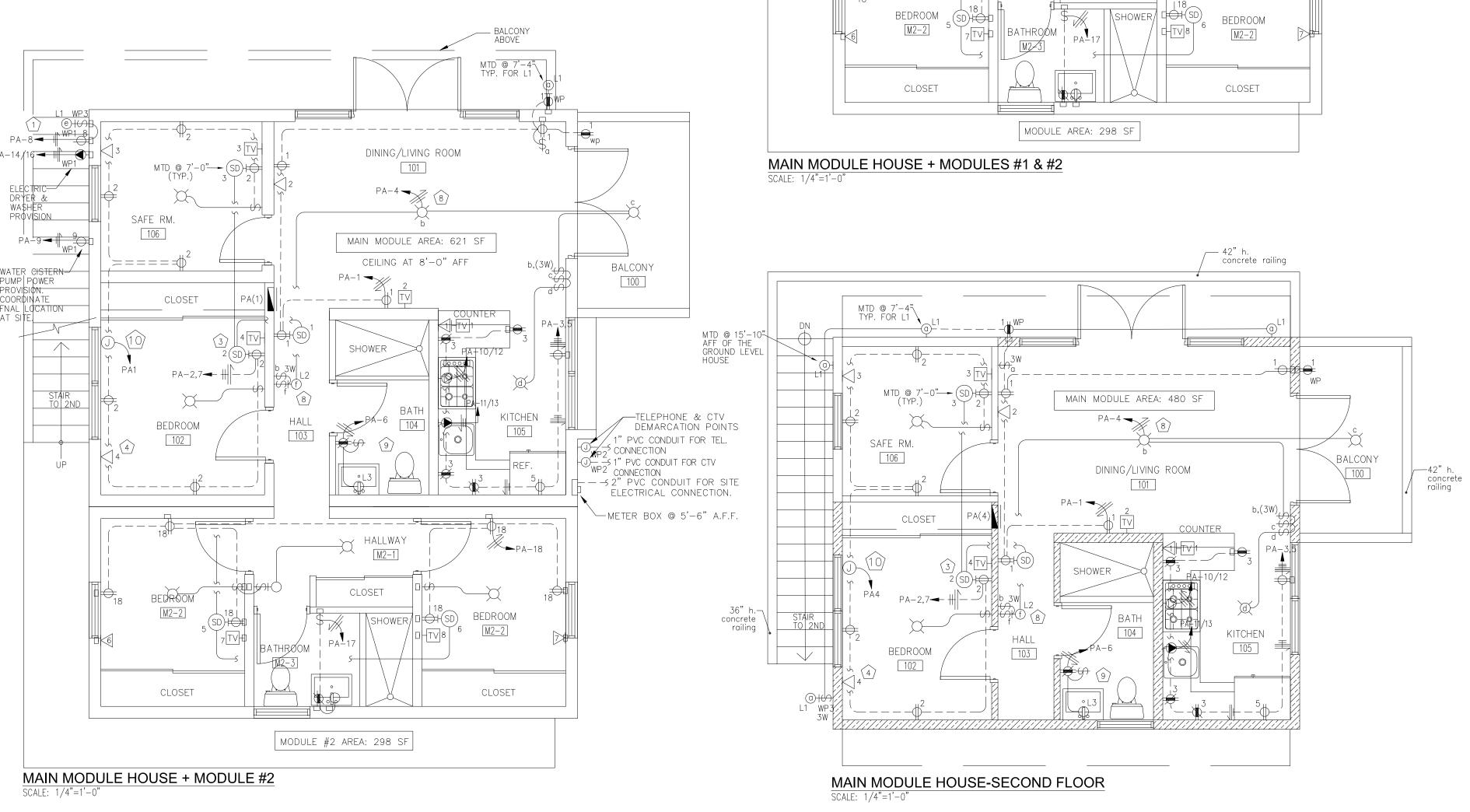
SHEET TITLE: PROTOTYPE #4 **MODULES JOINT DETAILS**

SHEET INFORMATION:

JOB No.	Date Issued: 05/08/20
Drawn By:	Sheet Number:
Checked By:	A 510
QC Review:	A-512
Phase:	

ALL DETECTORS MUST BE CONNECTED BETWEEN EACH OTHER FOR PARALLEL ACTIVATION.

COORDINATE WITH ARCHITECT OR FIELD ENGINEER THE FINAL LOCATION FOR ALL TELEPHONE AND CTV OUTLETS (TYPICAL).


5 VANITY LIGHTS OUTLETS. COORDINATE FINAL HEIGHT WITH ARCHITECT.

6 COORDINATE WITH ARCHITECT OR FIELD ENGINEER THE FINAL HEIGHT FOR LIGHTING FIXTURE.
7 NOT USED

8 ALL INDOOR & OUTDOOR LIGHTING FIXTURES ARE TO BE PORCELAIN LAMP HOLDERS WITH 26 WATTS FLUORESCENT BULBS OR LED EQUIVALENTS.

9 INTERLOCK FAN WITH BATHROOM LIGHTING SWITCH. COORDINATED WITH MECHANICAL DWGS.

10 4"X4" JUNCTION BOX FOR A/C UNIT DEDICATED RECEPTACLE. INSTALL EMPTY CONDUIT UP TO PANEL BOARD PA. RECEPTACLE, WIRING AND BREAKER (N.I.C.).

CONSULTANT: PROJECT NAME: NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPERATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. Description

SHEET TITLE:
PROTOTYPE #4 SCHEMATIC - TWO
STORY, CONC. & WOOD STRUCTURE &
WOOD GABLE ROOF

ISSUE LOG

PROFESSIONAL SEALS:

SHEET INFORMATION:

JOB No.

Drawn By:

Checked By:

QC Review:

Phase:

- CEILING MOUNTED LIGHTING OUTLET, COORDINATE FIXTURE TYPE WITH 1- IN CASE OF CONFLICTS BETWEEN DRAWINGS AND SPECIFICATIONS, THE ARCHITECT/OWNER
- WALL MOUNTED LIGHTING OUTLET COORDINATE FIXTURE TYPE WITH ARCHITECT/OWNER
- 15 AMPS, 125 VOLTS, NEMA 5-15R, 3-WIRE, TAMPER-RESISTANT, DUPLEX RECEPTACLE, STRAIGHT BLADE, SELF GROUNDING, SIDE WIRE, UL CERTIFIED & NEC COMPLIANCE. IMPACT-RESISTANCE THERMOPLASTIC DESIGN, FLUSH & HORIZONTALLY MOUNTED @ 18" A.F.F. UNLESS SPECIFIED. COORDINATE FINAL COLOR AND MATCHING PLATE WITH THE ARCHITECT
- SAME AS ABOVE BUT MTD. @ 6" ABOVE FINISH COUNTER. DO NOT EXCEED 42" ABOVE FINISH FLOOR LEVEL (A.F.F.).
- 15 AMP. 125 VOLT RECEPTACLE/OUTLET, NEMA 5-15R, 20 AMPS FEED-THROUGH, TAMPER RESISTANT, SELF GROUNDING, SELF TEST GFCI, BACK AND SIDE WIRED, NYLON WALL PLATE/FACE PLATE, SCREWS AND SELF GROUNDING CLIP. FLUSH & HORIZONTALLY MOUNTED @ 18" A.F.F. UNLESS SPECIFIED. COORDINATE FINAL COLOR AND COVER PLATE WITH ARCHITECT. UL CERTIFIED & NEC COMPLIANCE.
- SAME AS ABOVE BUT MTD. @ 6" ABOVE FINISH COUNTER. DO NOT EXCEED 42" ABOVE FINISH FLOOR LEVEL (A.F.F.).

WITH EQUIPMENT'S PIGTAIL PRIOR TO INSTALLATION.

50 AMP. NEMA 14-50R, 4W, 125/250 VOLTS, FLUSH MTD., STRAIGHT BLADE, GROUNDING, MOUNTED @ 18" A.F.F. WITH STAINLESS STEEL COVER PLATE.

UL LISTED & NEC COMPLIANCE. COORDINATE RECEPTACLE CONFIGURATION

- 30 AMP. NEMA 14-30R, 4W, 125/250 VOLTS, FLUSH MTD., STRAIGHT BLADE, GROUNDING, MOUNTED @ 18" A.F.F. WITH STAINLESS STEEL COVER PLATE. UL LISTED & NEC COMPLIANCE. COORDINATE RECEPTACLE CONFIGURATION WITH EQUIPMENT'S PIGTAIL PRIOR TO INSTALLATION.
- 15 AMPS, 120 VOLTS, TOGGLE FRAME SINGLE-POLE AC QUIET SWITCH. RESIDENTIAL GRADE, GROUNDING, SIDE WIRED, MOUNTED @ 48" A.F.F. SWITCH MUST BE ABLE TO WORK WITH FLUORESCENT AND LED LIGHTING FIXTURES. UL LISTED & NEC COMPLIANCE. COORDINATE FINAL COLOR AND MATCHING PLATE WITH THE ARCHITECT.
- 15 AMPS, 120 VOLTS, TOGGLE FRAME 3-WAY AC QUIET SWITCH, RESIDENTIAL GRADE, GROUNDING, SIDE WIRED, MOUNTED @ 48" A.F.F. SWITCH MUST BE ABLE TO WORK WITH FLUORESCENT AND LED LIGHTING FIXTURES. UL LISTED & NEC COMPLIANCE. COORDINATE FINAL COLOR AND MATCHING PLATE WITH THE ARCHITECT.
- JUNCTION BOX. MINIMUM SIZE 4"x 4" X 2-1/8". METAL ZINC GALVANIZED. WHEN BOXES ARE WALL MOUNTED AND USED AS JUNCTION BOXES. PROVIDE A 4"X4" SINGLE GANG RAISED COVER WITH PLASTIC BLANC COVER PLATE MATCHING RECEPTACLES AND SWITCHES PLATES. IF MOUNTED OUTSIDE PROVIDE AND OUTDOOR COVER PLATE WITH GASKET. WHEN JUNCTION BOX IS CEILING MOUNTED INSTALL WITH ROUND RAISED COVER AND ROUND COVER PLATE. IF MOUNTED OUTDOOR COVER PLATE MUST HAVE GASKET. FOR CEILING APPLICATIONS OCTAGONAL BOXES 21/8" DEEP ARE PERMITTED.
- JUNCTION BOXES MUST HAVE GROUND BUMP. LOAD CENTER, FLUSH MOUNTED, SINGLE PHASE, 100 AMPS, 3W, 120/240 V. INSULATED BONDABLE NEUTRAL, GROUND BAR, 10 KAIC. REFER TO PANEL
- 125 AMPS N-3R METER BOX/SOCKET WITH MAIN BREAKER 100A/250V/2P, 10K A.I.C., BOX MUST RE ALLIMINUM OF STAIN 500 CT. PRIOR INSTALLATION IF THE SERVICE WILL BE UNDERGROUND OR OVERHEAD. EQUIPMENT MUST BE APPROVED BY P.R.E.P.A. TELEVISION OUTLET BOX FLUSH MOUNTED. 4"X4"X2-1/8" ZINC GALVANIZED
- WITH 1G RAISED COVER. COORDINATE COVER PLATE COLOR WITH ARCHITECT. SAME AS ABOVE BUT MOUNTED. @ 6" ABOVE COUNTER. DO NOT EXCEED
- TELEPHONE OUTLET BOX FLUSH MOUNTED. 4"X4"X2-1/8" ZINC GALVANIZED √ WITH 1G RAISED COVER. COORDINATE COVER PLATE CÓLOR WITH ARCHITECT.
- MOUNTED @ 18" A.F.F. SAME AS ABOVE BUT MOUNTED. @ 6" ABOVE COUNTER. DO NOT EXCEED 42" A.F.F.
- ---- PVC CONDUIT CONCEALED IN FLOOR CONCRETE SLAB
- NEW HOMERUN TO PANELBOARD. PANEL & CIRCUIT AS INDICATED
- SD IONIZATION SMOKE DETECTOR, 120 VOLT. EQUAL MANUFACTURED BY BRK MODEL 4120B WITH BATTERY BACKUP.

IMPORTANT NOTES:

PANELBOARDS.

- 1 ALL SMOKE DETECTORS SHALL BE CONNECTED BETWEEN EACH OTHER FOR PARALLEL ACTIVATION IN CASE OF FIRE TO MEET LATEST HUD & FHA REGULATIONS.
- 2- ELECTRICAL CONTRACTOR MUST INSTALL ALL METER BASES ACCESSIBLE TO P.R.E.P.A. PERSONNEL.
- 3- ALL INDOOR & OUTDOOR LIGHTING FIXTURES ARE TO BE PORCELAIN LAMP HOLDERS WITH 26 WATTS FLUORESCENT BULBS OR LED EQUIVALENTS. 4- ELECTRICAL CONTRACTOR MUST VERIFY WITH FIELD ENGINEER ALL FINAL HEIGHTS FOR
- WIRING DEVICES AND LIGHTING FIXTURES. 5- ALL ELECTRICAL WORK SHALL BE COORDINATED WITH OTHER TRADE.
- 6- ELECTRICAL CONTRACTOR MUST BALANCE ALL ELECTRICAL LOADS. 7- PROVIDE TYPEWRITTEN IDENTIFICATION CARDS FOR ALL BRANCH CIRCUITS INSIDE THE
- EARTH FILL ---- FINISHED GRADE P.V.C. WARNING RIBBON 6" - WIDE WITH PELIGRO, PELIGRO, LINEAS ELECTRICAS DEBAJO. - COMPACTED BACKFILL MAIN SECONDARY FEEDER SEE DRAWINGS 3,000 PSI CONCRETE ENVELOPE WHEN CROSSING TRAFFIC

SECONDARY FEEDERS TRENCH DETAIL NOT TO SCALE FOR REFERENCE ONLY

AREAS OTHERWISE SAND BED

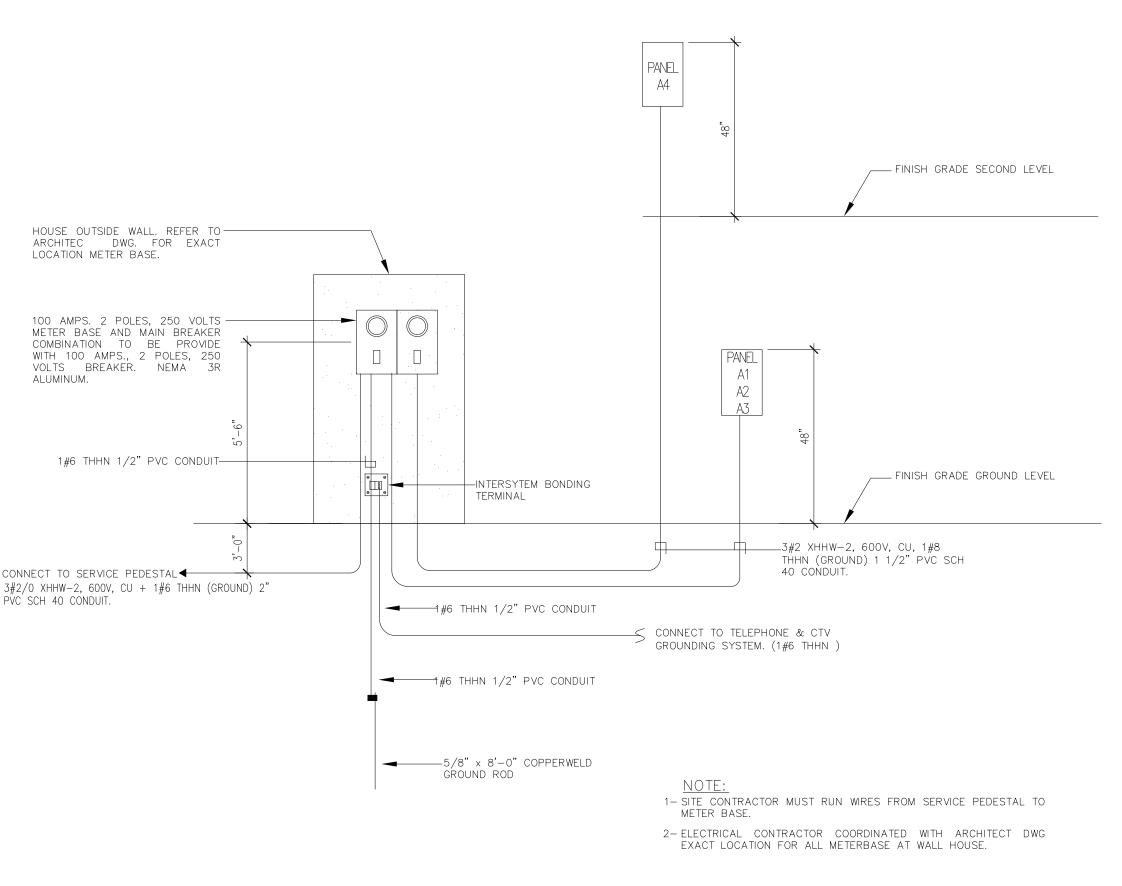
PLASTIC DUCT SPACERS EVERY

SPECIAL NOTES:

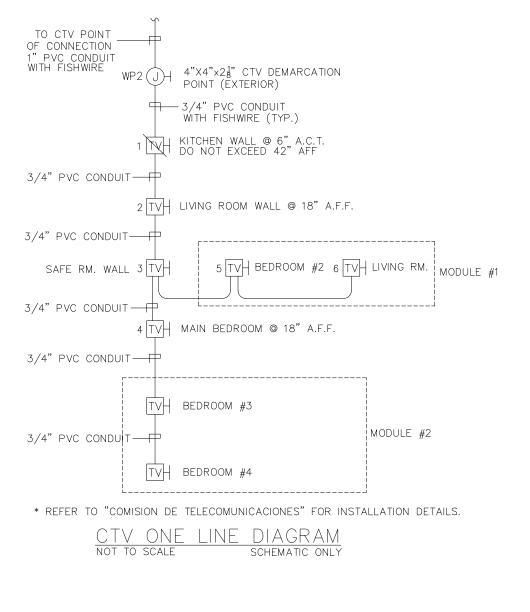
- CONTRACTOR SHALL NOT PROCEED WITH THAT PART OF THE WORK UNTIL SUCH DIFFERENCES HAVE BEEN BROUGHT TO THE ATTENTION OF THE
- 2- IN CASE THE CONTRACTOR BELIEVES HE HAS DISCOVERED DISCREPANCIES, ERRORS, OMISSIONS, ETC. IN THE DRAWINGS AND/OR SPECIFICATIONS, HE SHALL NOTIFY THE ENGINEER BEFORE PROCEEDING WITH THE WORK. IF THE CONTRACTOR FAILS TO GIVE SUCH NOTICE AND OBTAIN ADEQUATE CLARIFICATION, HE WILL BE HELD RESPONSIBLE FOR THE RESULT OF SUCH ERRORS OR OMISSIONS, AND HE WILL BE HELD RESPONSIBLE FOR THE COST OF RECTIFYING SUCH ERRORS.
- 3- BEFORE COMMENCING WORK, CONTRACTOR SHALL VERIFY MEASUREMENTS AT SITE AND THE EXISTING STRUCTURES (IF ANY). ANY DIFFERENCES BETWEEN ACTUAL MEASUREMENTS AND THOSE SHOWN ON PLANS, SHALL BE SUBMITTED TO THE ENGINEER FOR CONSIDERATIONS AND DECISIONS BEFORE
- 4- THE RIGHT TO CLARIFY THE WORK IS RESERVED BY THE ENGINEER. IF THE ENGINEER CONSIDERS IS NECESSARY, HE WILL PROVIDE ADDITIONAL DETAILS
- 5- ANY SET OF ELECTRICAL DRAWINGS WHICH IS MISSING AT LEAST ONE OF PAGES OF SET IS AUTOMATICALLY VOID. THIS INFORMATION WAS DEVELOPED TO BE USED OR AND IN CONNECTION WITH THIS PROJECT ONLY. HOWEVER IT REMAINS THE PROPERTY OF THIS OFFICE AND SHALL BE USED ONLY BY AUTHORIZED PERSONS AND CANNOT BE REPRODUCE IN ANY MANNERS UNLESS IT BEARS THE WRITTEN PERMISSION OF THE ARCHITECT.
- 6- WRITTEN DIMENSIONS SHALL HAVE PRECEDENCE OVER SCALED DIMENSIONS.
- 7- ALL PROGRAMS, DESIGN, DRAWINGS, SPECIFICATIONS AND PRINTED MATTERS HEREIN ISSUED BY THE ENGINEER ARE THE PROPERTY OF THE ENGINEER AND SHALL NOT BE USED ON ANY OTHER LOCATION OR PURPOSE EXCEPT THE ONE FOR WHICH THEY WERE EXPRESSLY DESIGN, IF THEY, OR ANY PART THEREOF IS REPRODUCED WITHOUT THE WRITTEN CONSENT OT THE ENGINEER, THE PERSON SO DOING WILL BE INDEBTED TO THE ENGINEER FOR
- 8- CONTRACTOR SHALL NOT USE FOR THE CONSTRUCTION PURPOSES ANY DOCUMENTS THAT WERE ADVANCED TO HIM PRIOR TO THE START OF THE CONSTRUCTION. ALL PLANS BEING USED BY CONTRACT SHOULD BEAR THE SEAL OF THE ENGINEER WITH P.R.E.P.A.'S ENDORSEMENT AND THE
- 9- CONTRACTOR SHALL MAKE PROVISIONS TO ORDER ALL ELECTRICAL EQUIPMENT AND MATERIALS SPECIFIED HEREIN UPON CONTRACT AWARD IN ORDER TO AVOID DELAYS OR CHANGES IN THE SPECIFIED PRODUCTS.
- 10- CONTRACTOR SHALL SUBMIT IN WRITING (ORIGINAL TO ENGINEER AND DUPLICATE TO THE OWNER). ANY REQUEST TO CHANGE A SPECIFIED ITEM SHALL WAIT FOR THE ENGINEER'S WRITTEN APPROVAL BEFORE PROCEEDING.
- 11- CONTRACTOR SHALL SUBMIT SAMPLES OF THE SPECIFIED MATERIALS AND MANUFACTURERS LITERATURE OF THE SPECIFIED EQUIPMENT AS WELL AS SHOP DRAWINGS. WHEN SO REQUESTED IN THE DRAWINGS OR SPECIFICATIONS PRIOR TO THE BEGINNING OF CONSTRUCTION.
- 12- ALL BOLTS, WASHERS, SCREWS AND NUTS EXCEPT IF OTHERWISE SPECIFIED SHALL BE GALVANIZED STEEL.

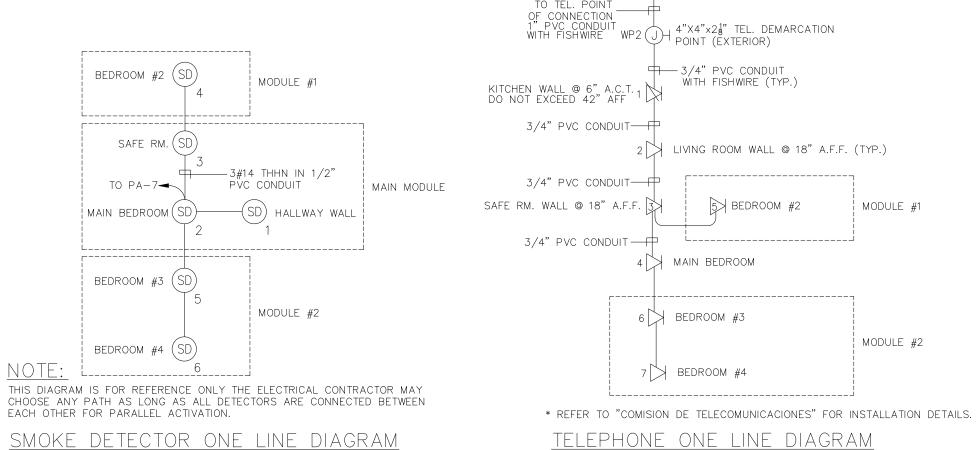
GENERAL NOTES:

- 1- PVC CONDUIT SHALL BE USED EXCEPT WHERE NOT ALLOWED BY N.E.C. OR UNLESS OTHER WISE INDICATED, 1/2" IPS MINIMUM SIZE AS ALLOWED BY THE NATIONAL ELECTRICAL CODE. IF ELECTRICAL CONTRACTOR USES NON METALLIC TUBING (ENT) FLEXIBLE CONDUIT IS USED 3/4" IPS IS THE MINIMUM ALLOWED.
- 2- THHN WIRE SHALL BE USED UNLESS OTHERWISE INDICATED. #12 AWG. MIN. GAUGE ALLOWED
- 3- WIRING DEVICES AND PLATES SHALL BE WHITE COLOR UNLESS OTHERWISE SPECIFIED BY ARCHITECT/ OWNER.
- 4- ALL ELECTRICAL INSTALLATION SHALL BE DONE IN STRICT ACCORDANCE WITH N.E.C. AND P.R.E.P.A. REGULATIONS LATEST EDITION.
- 5— INSTALLATION DETAILS ARE ILLUSTRATIVE AND SHOULD NOT BE USED WITHOUT VERIFYING JOB SITE CONDITIONS, CONTRACTOR SHALL SUBMIT
- SHOP DRAWINGS SHOWING ANY DEVIATION THEY PERFORM. 6- DIMENSIONS OF JUNCTION OR PULL BOXES SHALL BE REVISED BY THE
- ELECTRICAL CONTRACTOR ACCORDING TO ACTUAL BUILDING CONDITIONS TO SECURE AT LEAST THE MINIMUM CABLE BENDING RADIUS. 7- ALL ELECTRICAL WIRES MUST BE IDENTIFY WITH THEIR RESPECTIVE CIRCUIT
- NUMBER AT EACH JUNCTION BOX. 8- ELECTRICAL CONTRACTOR SHALL VISIT THE SITE TO FAMILIARIZE ITSELF WITH
- THE PROJECTPRIOR TO THEIR BID. 9- MINIMUN SIZE FOR ALL BOXES IS 4" X 4" X 2-3/8". NO 2"X4" BOXES ARE ALLOWED
- 10- ALL CONDUITS SHALL HAVE A MINIMUM OF 2#12 (HOT & NEUTRAL) & 1 #12 GROUND CONDUCTOR UNLESS OTHERWISE NOTED. FOR EXÁMPLE, CONDUITS SHOWN AS FOLLOW: 2#12 (HOT), 1#12 (NEUTRAL) & 1#12 (GROUND) WIRE; ### 3#12 (HOT), 1#12 (NEUTRAL) & 1#12 (GROUND).
- 11- THE ELECTRICAL SYSTEM SHALL HAVE GROUND CONTINUITY. NO JUMPER


- RGC RIGID GALVANIZED CONDUIT EMT ELECTRICAL METALLIC CONDUIT UOS UNLESS OTHERWISE SPECIFIED
- AFF ABOVE FINISHED FLOOR ACT ABOVE COUNTER TOP
- TEL TELEPHONE NIC NOT IN CONTRACT OR NOT INCLUDED GF DENOTES GROUND FAULT RECEPTACLE.
- WP DENOTES HORIZONTAL SINGLE GANG GFCI RECEPTACLE WEATHER PROOF COVER PLATE WHEN COVER IS CLOSED, UL LISTED FOR WET LOCATION. EQUAL OR SIMILAR TO THOMAS & BETTS RED DOT CAT.#
- WP1 DENOTES SINGLE GANG WEATHER PROOF COVER PLATE WHILE IN USE, METALLIC, UL LISTED FOR WET LOCATION. MEDIUM HORIZONTAL COVER 31/2" DEEP WITH GASKET. EQUAL OR SIMILAR TO THOMAS & BETTS RED DOT CAT.# CKMU
- WP2 DENOTES 2"X4" BLANK COVER PLATE WITH GASKET, ALUMINUM, UL LISTED FOR WET LOCATION.. SIMILAR OR EQUAL RED DOT CAT.# 1CCB-AL
- WP3 DENOTES 2"X4" SINGLE GANG LIGHT SWITCH WEATHER PROOF COVER PLATE WITH GASKET, ALUMINUM, UL LISTED FOR WET LOCATION.. SIMILAR OR EQUAL RED

DOT CAT.# CCT-1


DECIONATION	DESCRIPTION	BREAKERS			
DESIGNATION TYPE		CKT. No.	POLES	TRIP (AMPS)	REMARKS
PANEL "PA1"	100 AMPS LOAD CENTER		2	100	MAIN BREAKER
PANEL "PA4"	10, 3W, GROUND BUS, FLUSH MOUNTED NEMA 1 ENCLOSURE	1	1	20*	LIVING / DINING RM RECEP.
	120/240 VAC 10,000 AMP. I.C. CAPACITY MIN., 100/2P MAIN	2	1	20*	BEDROOMS RECEPTACLES
	BREAKER 24 SINGLE SPACE — 24 POLE SIMILAR TO CUTLER—HAMMER TYPE CH ** COMBINATION ARC—FAULT BREAKER (AFCI) ** GROUND FAULT BREAKER *** DUAL FUNCTION CIRCUIT BREAKER (CAFI+GFI)	3	1	20*	KITCHEN RECEPTACLES
		4	1	20*	GENERAL LIGHTING
		5	1	20***	REFRIGERATOR RECEPTACLE
		6	1	20	BATHROOM RECEPTACLES
		7	1	20*	SMOKE DETECTORS
		8	1	20*	LAUNDRY RECEPTACLES
		9	1	20**	CISTERN PUMP
		10/12	2	50	RANGE (3#6, 1#10) 1"
		11/13	2	30	WATER HEATER (4#10) 3/4"
		14/16	2	30	DRYER (4#10)3/4"
		15			SPACE
		16-24			SPACE


DESIGNATION		BREAKERS			
TYPE	DESCRIPTION	CKT. No.	POLES	TRIP (AMPS)	REMARKS
PANEL "PA2"	100 AMPS LOAD CENTER		2	100	MAIN BREAKER
	10, 3W, GROUND BUS, FLUSH MOUNTED NEMA 1 ENCLOSURE	1	1	20*	LIVING / DINING RM RECEP.
	120/240 VAC 10,000 AMP. I.C. CAPACITY MIN., 100/2P MAIN	2	1	20*	BEDROOMS RECEPTACLES
	BREAKER 24 SINGLE SPACE — 24 POLE SIMILAR TO CUTLER—HAMMER TYPE CH	3	1	20*	KITCHEN RECEPTACLES
		4	1	20*	GENERAL LIGHTING
		5	1	20***	REFRIGERATOR RECEPTACLE
		6	1	20	BATHROOM RECEPTACLES
		7	1	20*	SMOKE DETECTORS
4 001/01/10/14/00 54/1/7	_*_ COMBINATION ARC-FAULT	8	1	20*	LAUNDRY RECEPTACLES
	BREAKER (AFCI)	9	1	20**	CISTERN PUMP
	<u>**</u> GROUND FAULT BREAKER	10/12	2	50	RANGE (3#6, 1#10) 1"
	*** DUAL FUNCTION CIRCUIT	11/13	2	30	WATER HEATER (3#10) 3/4"
	BREAKER (CAFI+GFI)	14/16	2	30	DRYER (4#10)3/4"
		15			SPACE
		16	1	20	MODULE 1 EXPANSION
		17-24			SPACE

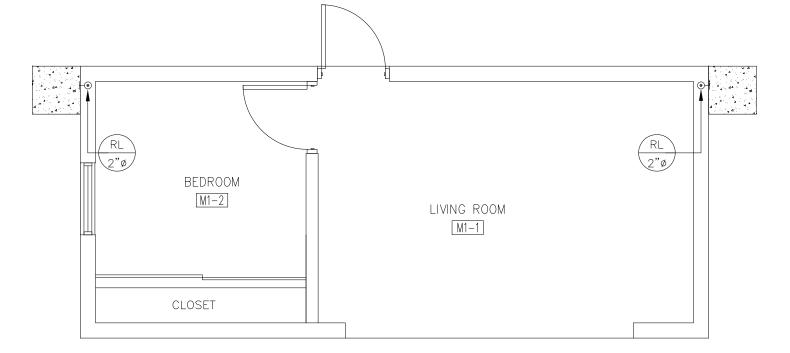
	PANELBOA	RD S	5 C I	H E [D U L E
DECION A TION		BREAKERS			
DESIGNATION TYPE	DESCRIPTION	CKT. No.	POLES	TRIP (AMPS)	REMARKS
PANEL "PA3"	100 AMPS LOAD CENTER		2	100	MAIN BREAKER
	10, 3W, GROUND BUS, FLUSH MOUNTED NEMA 1 ENCLOSURE	1	1	20*	LIVING / DINING RM RECEP.
	120/240 VAC 10,000 AMP. I.C. CAPACITY MIN., 100/2P MAIN	2	1	20*	BEDROOMS RECEPTACLES
	BREAKER 24 SINGLE SPACE — 24 POLE	3	1	20*	KITCHEN RECEPTACLES
	SIMILAR TO CUTLER—HAMMER TYPE CH	4	1	20*	GENERAL LIGHTING
	THE OIL	5	1	20***	REFRIGERATOR RECEPTACLE
		6	1	20	BATHROOM RECEPTACLES
		7	1	20*	SMOKE DETECTORS
		8	1	20*	LAUNDRY RECEPTACLES
		9	1	20**	CISTERN PUMP
	* COMBINATION ARC-FAULT	10/12	2	50	RANGE (3#6, 1#10) 1"
	BREAKER (AFCI)	11/13	2	30	WATER HEATER (3#10) 3/4"
	** GROUND FAULT BREAKER	14/16	2	30	DRYER (4#10)3/4"
	*** DUAL FUNCTION CIRCUIT BREAKER (CAFI+GFI)	15			SPACE
	DINLANCIN (CALITUIT)	16	1	20*	MODULE 1 EXPANSION
		17	1	20	MODULE 2 BATHROOM
		18	1	20*	MODULE 2 BEDROOMS
		19-24			SPACE

TYP. METER BASE ONE LINE DETAIL FOR REFERENCE ONLY

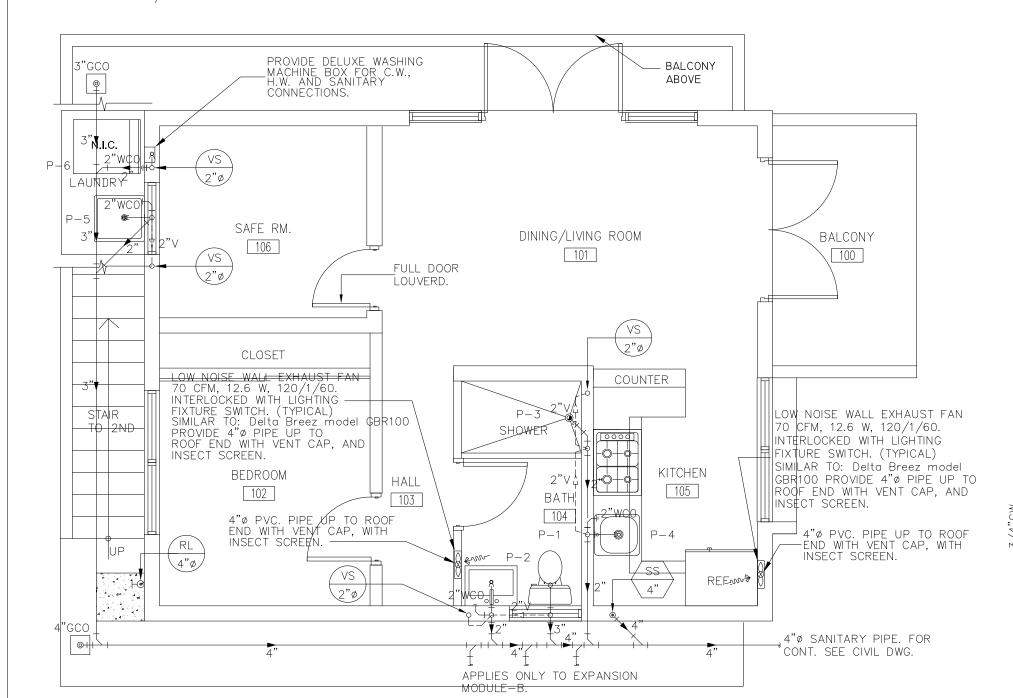
NOT TO SCALE

NOT FOR CONSTRUCTION

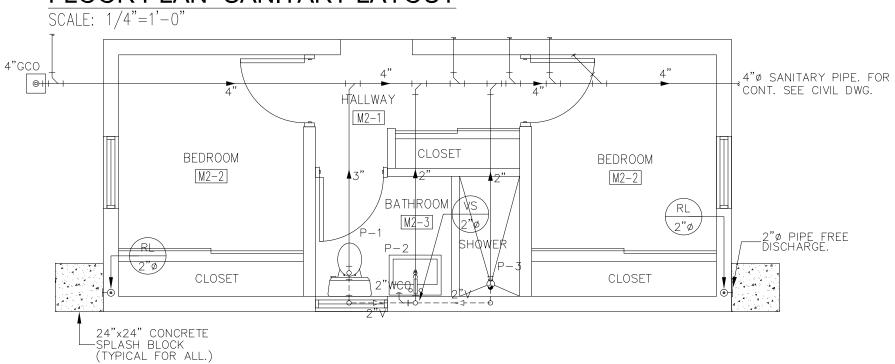
CONSULTANT: PROJECT NAME: NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS**


RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPERATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. Description ISSUE LOG PROFESSIONAL SEALS:

INFORMATION HAS BEEN DEVELOPED FOR THE USE OF


PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO

PROTOTYPE #4 SCHEMATIC - TWO STORY, CONC. & WOOD STRUCTURE & **WOOD GABLE ROOF**


SHEET INFORMATION: Date Issued: 05/08/2020 JOB No. Drawn By: Sheet Number: Checked By: E-40⁻ QC Review: Phase:

EXPANSION MODULE - A FLOOR PLAN- SANITARY LAYOUT

MAIN MODULE HOUSE #4 FLOOR PLAN- SANITARY LAYOUT

EXPANSION MODULE - B FLOOR PLAN- SANITARY LAYOUT SCALE: 1/4"=1'-0"

PLUMBING LEGEND:

------ COLD POTABLE WATER LINE ----- HOT POTABLE WATER LINE ---- SANITARY VENTILATION LINE CWR ½"ø INDICATES COLD WATER RISER DESIGNATION AND SIZE

HWS ½"ø HWR ½"ø

INDICATES HOT WATER SUPPLY RISER DESIGNATION AND SIZE

INDICATES HOT WATER RETURN RISER DESIGNATION AND SIZE INDICATES SANITARY STACK DESIGNATION AND SIZE

INDICATES SANITARY VENTILATION STACK DESIGNATION AND SIZE

INDICATES PLUMBING FIXTURE DESIGNATION SEE SCHEDULE POINT OF CONNECTION

HOSE BIBB CEILING CASSETTE FAN COIL UNIT

PLUMBING

ABBREVIATIONS:

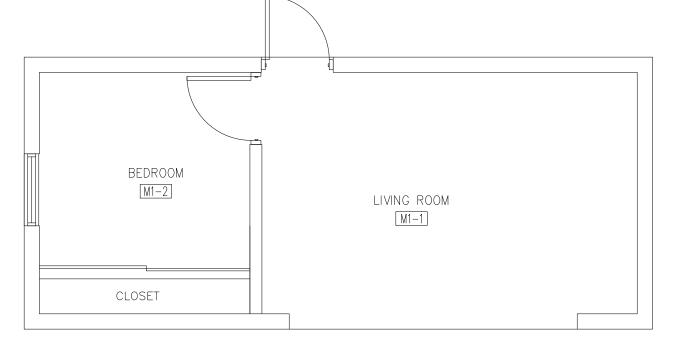
TYPICAL

WCO WALL CLEAN OUT

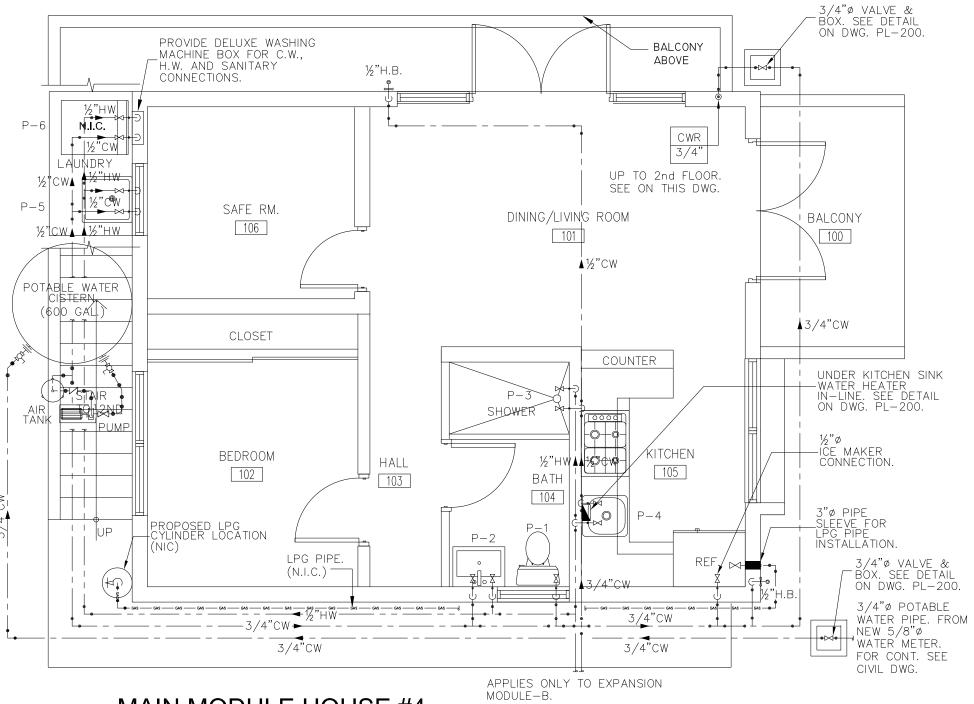
FCO FLOOR CLEAN OUT

VENT STACK

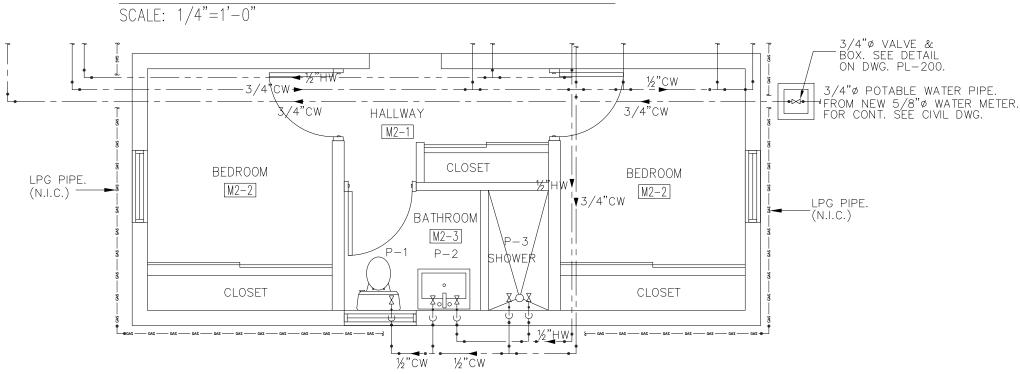
HOT WATER SUPPLY


HOT WATER RETURN

GROUND CLEAN OUT

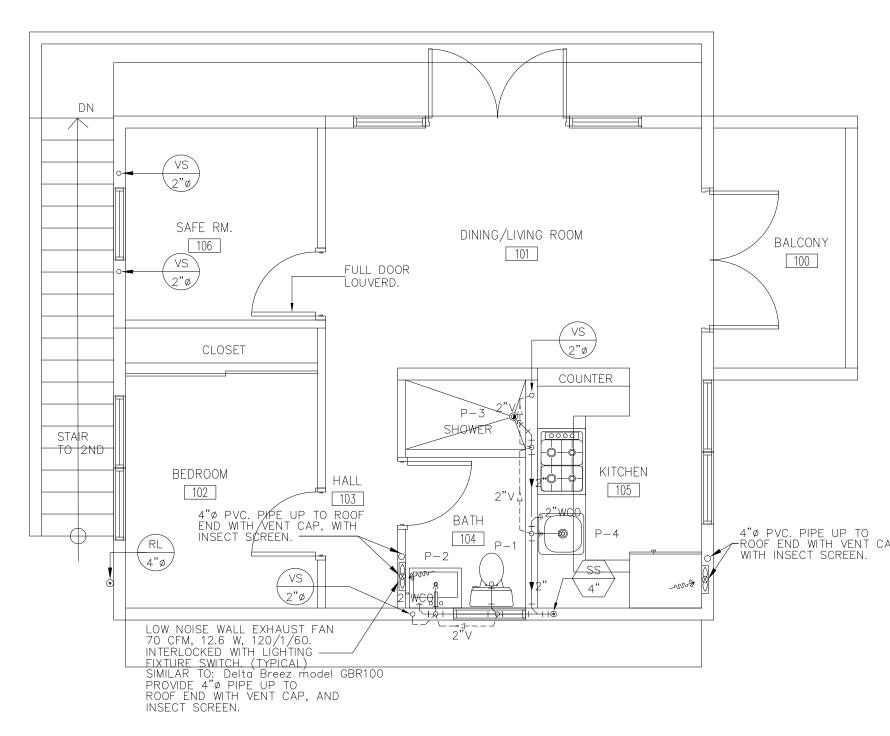

WATER HEATER

FLOOR DRAIN

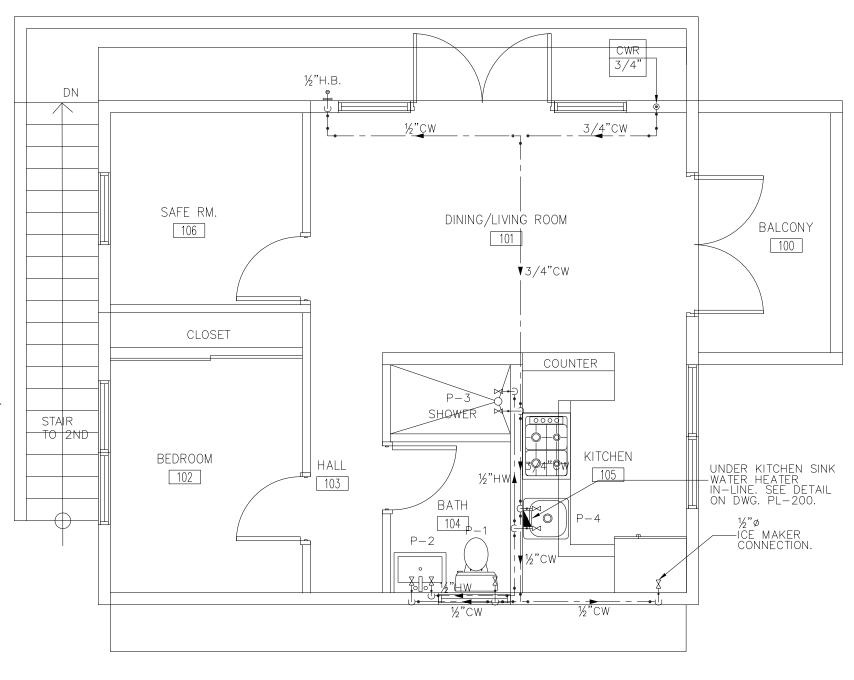

C.W. COLD WATER

EXPANSION MODULE - A FLOOR PLAN- POTABLE WATER LAYOUT

MAIN MODULE HOUSE #4 FLOOR PLAN- POTABLE WATER LAYOUT



EXPANSION MODULE - B FLOOR PLAN- POTABLE WATER LAYOUT SCALE: 1/4"=1'-0"


NOTE:

1) NON-POTABLE WATER SYSTEM IS NOT IN CONTRACT. CISTERN LOCATION SHOULD BE EVALUATED ACCORDING TO ACTUAL SITE CONDITIONS.

2) LPG SYSTEM IS NOT IN CONTRACT. INSTALLATION SHALL COMPLY WITH APPLICABLE CODES, REGULATIONS, STANDARDS AND "COMISION DE SERVICIO PUBLICO"

MAIN MODULE HOUSE #4 2nd FLOOR PLAN- SANITARY LAYOUT SCALE: 1/4"=1'-0"

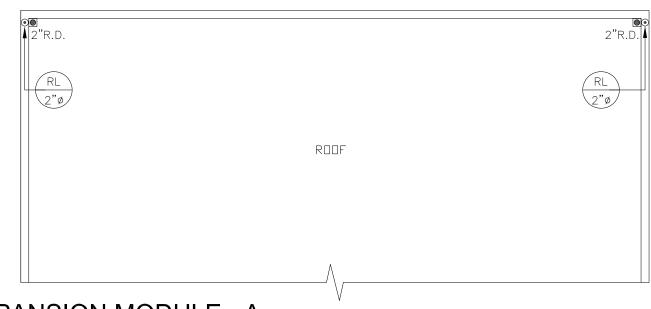
MAIN MODULE HOUSE #4 2nd FLOOR PLAN- POTABLE WATER LAYOUT SCALE: 1/4"=1'-0"

CONSULTANT: CLIENT:

PROJECT NAME:

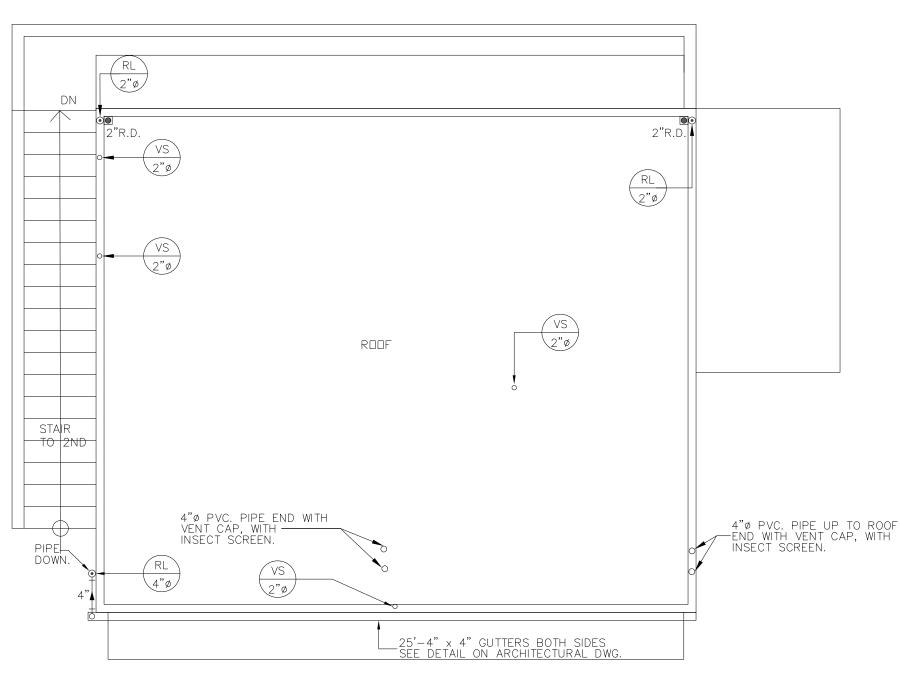
NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPERATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

No.	Date	Description
ISSUE L	OG	

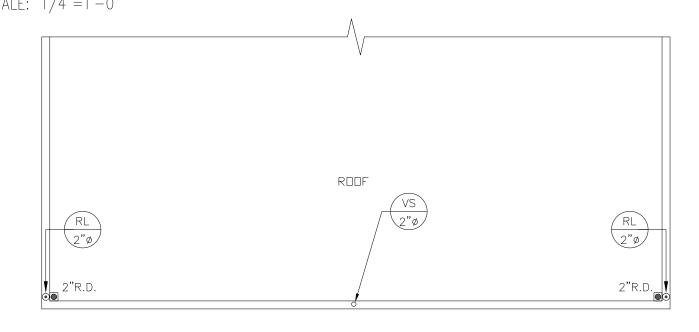

PROFESSIONAL SEALS:

SHEET TITLE

Phase:


PROTOTYPE #4 FLOOR PLAN-**PLUMBING LAYOUT**

SHEET INFORMATION: Date Issued: 05/08/2020 JOB No. Drawn By: Sheet Number: Checked By: **PL-103** QC Review:



EXPANSION MODULE - A ROOF PLAN- PLUMBING LAYOUT

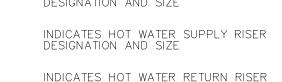
SCALE: 1/4"=1'-0"

MAIN MODULE HOUSE #4 ROOF PLAN- PLUMBING LAYOUT SCALE: 1/4"=1'-0"

EXPANSION MODULE - B ROOF PLAN- PLUMBING LAYOUT SCALE: 1/4"=1'-0"

PLUMBING LEGEND:

------ COLD POTABLE WATER LINE ------ HOT POTABLE WATER LINE — — — — SANITARY VENTILATION LINE


CWR
½"ø

HWS
½"ø

HWR
½"ø

SS
3"ø

INDICATES COLD WATER RISER DESIGNATION AND SIZE

INDICATES HOT WATER RETURN RISER DESIGNATION AND SIZE INDICATES SANITARY STACK DESIGNATION AND SIZE

(TYP.) TYPICAL

INDICATES SANITARY VENTILATION STACK DESIGNATION AND SIZE

INDICATES RAIN LEADER STACK DESIGNATION AND SIZE

POINT OF CONNECTION

INDICATES WASTE STACK DESIGNATION AND SIZE

CEILING CASSETTE FAN COIL UNIT

PLUMBING ABBREVIATIONS:

HWS HOT WATER SUPPLY HWR HOT WATER RETURN VENT STACK WCO WALL CLEAN OUT FCO FLOOR CLEAN OUT GCO GROUND CLEAN OUT

WATER HEATER

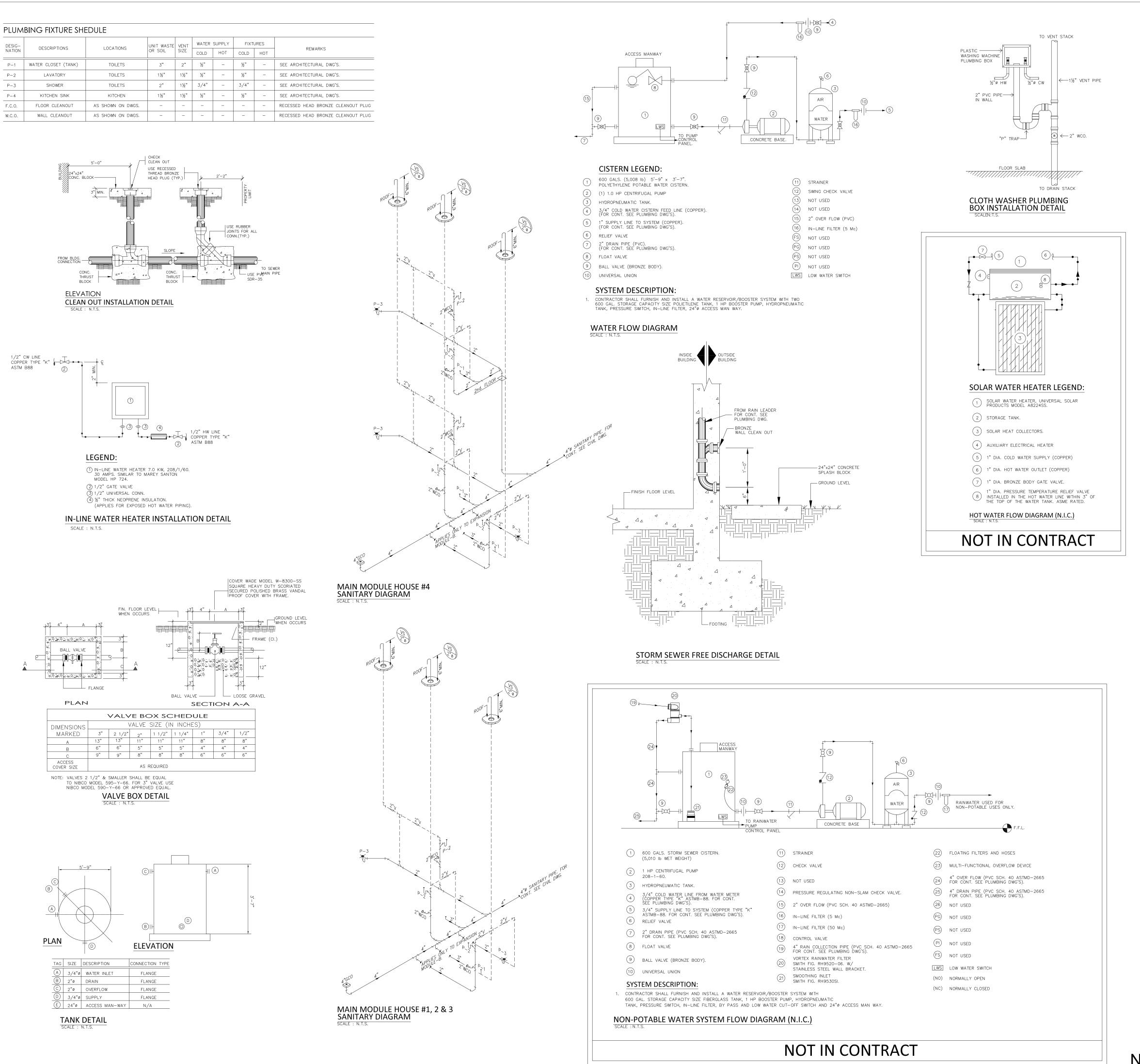
CONSULTANT:

CLIENT:

PROJECT NAME:

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPERATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

		-
		-
ISSUE LO)G	
IOOUE LU	JG	


PROFESSIONAL SEALS:

SHEET TITLE:

Phase:

PROTOTYPE #4 **ROOF PLAN-**PLUMBING LAYOUT

SHEET INFORMATION:	
JOB No.	Date Issued: 05/08/2020
Drawn By:	Sheet Number:
Checked By:	
QC Review:	PL-104

PLUMBING GENERAL NOTES:

- 1. ALL PLUMBING WORK SHALL BE IN STRICT ACCORDANCE WITH THE DEPARTMENT OF HEALTH OF P.R., THE LOCAL BUILDING CODE, THE NATIONAL PLUMBING CODE (A.S.A. A 40 8-1955) AND THE SPECIFICATIONS ISSUED FOR THIS PROJECT.
- 2. CLEANOUTS SHALL BE OF THE SAME NOMINAL SIZE AS THE PIPE DIAMETER UP TO 4".
- 3. THE CONTRACTOR SHALL FURNISH AND SET IN PLACE BEFORE CONCRETE POURING ALL NECESSARY SLEEVES FOR WASTE OR SOIL, COLD WATER LINES. THESE SLEEVES SHALL BE AS PER THE SPECIFICATIONS.
- 4. THE PLUMBING CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF THE PIPING TO AVOID ANY INTERFERENCE WITH PIPING AND/OR EQUIPMENT BEING INSTALLED BY OTHER CONTRACTORS.
- FOR FIXTURES AND/OR EQUIPMENT NOT LISTED IN THE SCHEDULE, SEE THE SPECIFICATIONS.
- 6. CLEANOUTS SHALL BE PLACED AS SHOWN ON DRAWINGS.
- 7. THE CONTRACTOR SHALL VERIFY IN FIELD ALL INVERT ELEVATIONS AND SHALL MAKE ANY NECESSARY ADJUSTMENT AS REQUIRED BY FIELD CONDITIONS AND AS REQUIRED, TO OBTAIN THE PROPER SLOPES.
- 8. IT IS THE INTENTION OF THE DRAWINGS TO CALL FOR FINISHED WORK,
 COMPLETE, TESTED AND READY FOR OPERATION. MINOR DETAILS NOT SHOWN

CONSULTANT:

INDICATES HOT WATER RETURN RISER DESIGNATION AND SIZE

INDICATES HOT WATER SUPPLY RISER DESIGNATION AND SIZE

INDICATES SANITARY STACK DESIGNATION AND SIZE INDICATES WASTE STACK DESIGNATION AND SIZE INDICATES RAIN LEADER STACK DESIGNATION AND SIZE

INDICATES SANITARY VENTILATION STACK DESIGNATION AND SIZE INDICATES PLUMBING FIXTURE DESIGNATION SEE SCHEDULE

POINT OF CONNECTION

PLUMBING ABBREVIATIONS:

VS VENT STACK WCO WALL CLEAN OUT

GROUND CLEAN OUT W.H. WATER HEATER

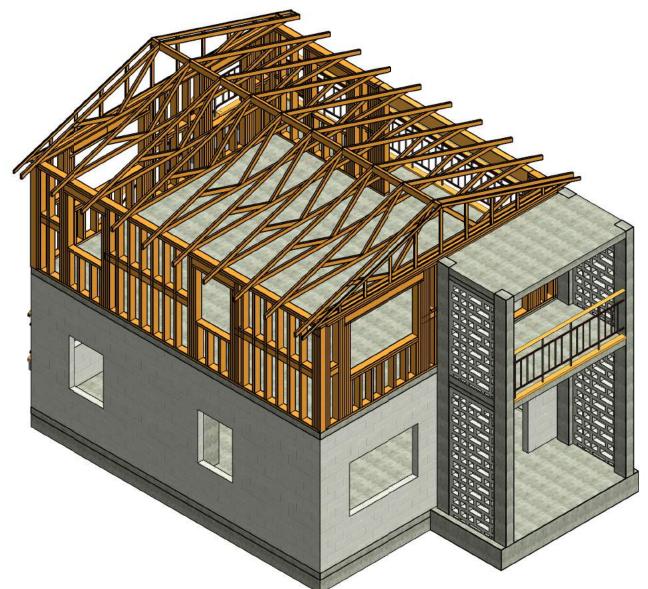
FD FLOOR DRAIN V VENTILATION H.B. HOSE BIBB

EXISTING CC CEILING CASSETTE FCU FAN COIL UNIT

PLUMBING DETAILS, **SCHEDULES & NOTES**

ISSUE LOG

SHEET TITLE:


PROFESSIONAL SEALS:

SHEET INFORMATION: Date Issued: 05/08/2020 JOB No. Drawn By: Sheet Number: Checked By: **PL-200** QC Review: Phase:

NOT FOR CONSTRUCTION

	OR SPECIFIED, BUT NECESSARY FOR THE PROPER INSTALLATION AND FOR FUNCTIONING AND OPERATION OF THE SYSTEM SHALL FORM PART OF THE WORK TO BE DONE BY THE CONTRACTOR.				
TO DRAIN STACK HER PLUMBING ATION DETAIL	9. BIDDERS SHALL VISIT THE SITE AND ACQUAINT THEMSELVES WITH THE CONDITIONS AS THEY ACTUALLY EXIST AND VERIFY DIMENSIONS, LOCATIONS AND DETAILS REQUIRED TO COMPLETE THE WORK. WHICH WILL BE THE ONLY OPPORTUNITY FOR POTENTIAL CONTRACTORS TO SEE THE SITE. FAILURE TO VISIT THE PROJECT AREA WILL IN NO WAY RELIEVE THE SUCCESSFUL BIDDER OF FURNISHING ALL MATERIAL AND PERFORMING ALL WORK REQUIRED FOR THE COMPLETION OF THE CONTRACT. VISITS TO THE PROJECT AREA SHALL BE ARRANGED THROUGH THE OWNER.	CLIEN	T:		
	10. PROVIDE ACCESS FOR OPERATION AND MAINTENANCE TO EVERY PLUMBING VALVE. ACCESS SHALL BE AS REQUIRED BY ARCHITECT.				
	11. THE CONTRACTOR SHALL, WITHOUT EXTRA CHARGE, MAKE REASONABLE MODIFICATIONS IN THE LAYOUT, AS NEEDED, TO PREVENT CONFLICT WITH WORK OF OTHER TRADES OR FOR PROPER EXECUTION OF THE WORK.				
60	12. CONTRACTOR SHALL LOCATE IN FULLY ACCESSIBLE POSITIONS ALL EQUIPMENT WHICH MUST BE SERVICED, OPERATED, OR MAINTAINED.				
	13. INSTALL WATER HAMMER ARRESTER AS PER PDI-WH-201.				
8	14. ALL UNDERGROUND COPPER PIPING SHALL BE TYPE "K"ASTM B-88, DIAMETER AS INDICATED.				
2)	15. ALL COPPER PIPING ABOVE FINISH FLOOR ELEVATION SHALL BE TYPE "L"ASTM B-88, DIAMETER AS INDICATED.				
	16. ALL WASTE, SANITARY AND STORM DRAINAGE LINES SHALL BE PVC SCH-40.				
	17. ALL PIPING SHALL BE CONCEALED IN FLOOR TOPPINGS, WALL OR CHASES UNLESS OTHERWISE NOTED.				
	18. LONG SWEEP BENDS OR LONG SWEEP FITTINGS SHALL BE PROVIDED AT THE BASE OF ALL STACKS.	PROJE	ECT NAME:		
3 1	19. CLEANOUTS SHALL NOT BE MORE THAN 50 FEET APART			•	
	20. THE PLUMBING CONTRACTOR SHALL COORDINATE HIS/HER PORTION OF THE WORK WITH THE GENERAL CONTRACTOR AND SHALL PROVIDE SLEEVES AT SLABS OR BEAMS FOR PIPING LAYOUT AND FIXTURES INSTALLATION.			ぱ	
	21. ALL FIXTURES SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER SPECIFICATIONS.				
ER HEATER LEGEND:	22. SIZES SHOWN IN FIXTURES SCHEDULE ARE MINIMUM AND SHALL BE INCREASED AS NECESSARY TO COMPLY WITH CODE REQUIREMENTS OR AS SHOWN ON DRAWINGS.				
R HEATER, UNIVERSAL SOLAR ODEL A8224SS.	23. SINGLE AND DOUBLE TEES AND QUATER BENDS SHALL BE USED IN LINES ONLY WHERE THE DIRECTION OF FLOW IS FROM THE HORIZONTAL TO THE VERTICAL.			Z	
COLLECTORS.	24. ALL HORIZONTAL PORTIONS OF SOIL STACKS AND BRANCHES SHALL HAVE MINIMUM SLOPE OF 1/4" PER FOOT FOR PIPES 3" DIAMETER OR LESS. 1/8" PER FOOT FOR PIPES 4" OR LARGER IN DIAMETER.			~ ~	
ECTRICAL HEATER	25. THE PLUMBING CONTRACTOR SHALL COORDINATE HIS/HER WORK IN ORDER TO AVOID ANY INTERFERENCE WITH THE WORK OF OTHER CONTRACTORS AND THE INSTALLATION OF FIXTURES AND OR EQUIPMENT BY OTHERS.		S		
WATER SUPPLY (COPPER) WATER OUTLET (COPPER)	26. WATER HAMMER ARRESTER SHALL BE INSTALLED IN ALL WATER DISTRIBUTION BRANCHES WHENEVER INDICATED ON THE DRAWINGS AS PER MANUFACTURER RECOMMENDATIONS. SAME SHALL BE SERIES 5000, MODELS AS SHOWN ON LEGEND.			Z	
IZE BODY GATE VALVE. SURE TEMPERATURE RELIEF VALVE I THE HOT WATER LINE WITHIN 3" OF THE WATER TANK, ASME RATED.	27. WATER HAMMER ARRESTERS INSTALLED ON WALLS SHALL BE PROVIDED WITH 12" X 12" FRAME WITH HINGERS LOCKED DOOR, MODEL JAY R. SMITH FIG.4762—SL,WITH ITS BOTTOM AT 18" ABOVE FINISH FLOOR ELEVATION.		\geq	A O	
DW DIAGRAM (N.I.C.)	28. GATE VALVES LOCATED UNDERGROUND OR BELOW FLOOR SLABS SHALL BE INSTALLED WITHIN A CAST IRON OR CONCRETE BOX WITH 9 X 9 J.R. SMITH ACCESS COVER FIG. 4915—U.			⊇≶	
CONTRACT	29. PLUMBING CONTRACTOR SHALL PROVIDE ALL NECESSARY SERVICES AND/OR CONNECTIONS REQUIRED FOR THE PLUMBING FIXTURES AND/OR EQUIPMENT SHOWN ON THE FIXTURES PLANS.		•		
	30. PLUMBING CONTRACTOR SHALL PROVIDE ALL NECESSARY ROUGHING—IN AND SHALL INSTALL THE PLUMBING FIXTURES INDICATED ON THESE DRAWINGS.			O	
	31. WHENEVER REQUIRED OR NEEDED. THE PLUMBING CONTRACTOR SHALL PREPARE AND SUBMIT THE NECESSARY SHOP DRAWINGS FOR THE APPROVAL OF THE ARCHITECT.			RUCTION CONTACT PUERTO RICO MIC DEVELOPMENT AND COMMERCE	
	32. BEFORE STARTING CONSTRUCTION, THE PLUMBING CONTRACTOR SHALL VERIFY THE EXACT LOCATION AND ELEVATIONS OF EXISTING PIPE LINES TO REMAIN IN USE ANY SIGNIFICANT DISCREPANCY WITH THE INFORMATION SHOWN ON THESE DRAWINGS SHALL BE NOTIFIED TO THE ARCHITECT FOR REVISION AND/OR CLARIFICATION.	BUILDIN	IG REQUIREMENT IATION HAS BEEN	GEMENT OFFICE (OGPe-DDEC) FOR 'S IN PUERTO RICO. THIS I DEVELOPED FOR THE USE OF S AND IS BELIEVED TO MEET THE PUER	т0
	33. ALL EXPOSED HOT WATER LINES SHALL BE INSULATED WITH 1-1/2" THICK MATERIAL WITH A THERMAL CONDUCTIVITY NOT TO EXCEED 0.22BTU PER SQ. INCH PER HOUR AT MEAN TEMPERATURE OF 75'F	RICO BU APPROV	JILDING CODE. AL /ED BY DDEC, PER	S AND IS BELIEVED TO MEET THE PUER LL DRAWINGS MUST BE SEPERATELY RMITS MANAGEMENT OFFICE BUILDING PERMIT APPLICATION.	10
	34. FIXTURES, FITTINGS, ACCESSORIES, MATERIAL AND ALL PLUMBING PRODUCTS SHALL BE AS PER SPECIFICATIONS ON THESE DRAWINGS AND CONTRACT SPECIFICATIONS. EQUAL OR SIMILAR SHALL BE ONLY ACCEPTED IF PREVIOUSLY APPROVED BY THE ARCHITECT.	No.	Date	Description	_
			_		
1	PLUMBING LEGEND:		_	_	_
			_		_
	——————————————————————————————————————				
	SANITARY VENTILATION LINE				
	CWR INDICATES COLD WATER RISER 1/2" Ø DESIGNATION AND SIZE				
	HWS INDICATES HOT WATER SUPPLY RISER				

PRESCRIPTIVE DESIGN FOR TWO STORY CMU/WOOD RESIDENTIAL HOME IN PUERTO RICO

ISOMETRIC VIEW OF PRIMARY STRUCTURE

ISOMETRIC VIEW OF PRIMARY STRUCTURE

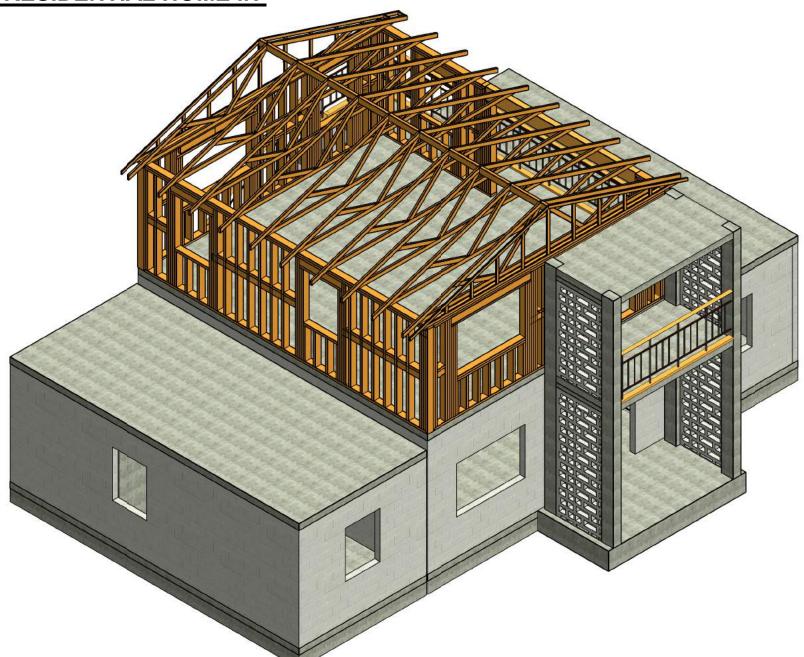
PREFACE:

THIS PRESCRIPTIVE HOME DRAWING SET PRESENTS RECOMMENDATIONS FOR THE CONSTRUCTION OF A TWO STORY HOME (PRIMARY STRUCTURE) WITH FUTURE ADDITIONS (MODULES).

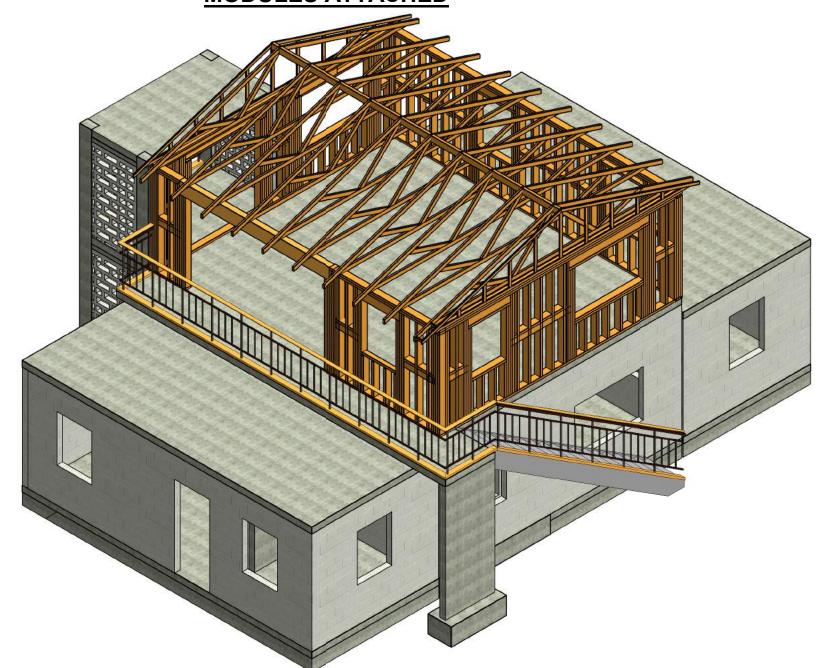
THIS GUIDANCE DISPLAYS INFORMATION FOR A PARTICULAR SIZED HOME. THE DESIGN INFORMATION PROVIDED HEREIN INCORPORATES SEISMIC AND WIND CRITERIA BASED UPON THE LATEST PUERTO RICO BUILDING CODE WHICH REFERENCES THE 2018 INTERNATIONAL RESIDENTIAL CODE (2018 IRC), 2018 INTERNATIONAL BUILDING CODE (2018 IBC), AND THE AMERICAN SOCIETY OF FIVIL ENGINEERS ASCE/SEI 7-16: MINIMUM DESIGN LOADS AND ASSOCIATED CRITIERIA FOR BUILDINGS

ALL RECOMMENDED DESIGN WORK, INCLUDING THOSE PARTS COVERED BY THIS DOCUMENT, SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL SUCH AS A REGISTERED PROFESSIONAL ENGINEER OR A LICENSED ARCHITECT IN PUERTO RICO. WHEN THESE GUIDANCE DRAWINGS ARE USED FOR A PROJECT, THEY SHOULD BE MODIFIED AS NEEDED IN ORDER TO COMPLY WITH ALL OF THE APPLICABLE CODE REQUIREMENTS FOR A GIVEN PROJECT SITE, THEN SIGNED AND SEALED IN ACCORDANCE WITH PUERTO RICO LAWS, BUILDING CODE, AND DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERENCE (DDEC)

THE FOLLOWING BOUNDARY CONDITIONS SHALL BE MET IN ORDER TO USE THIS DRAWING SET. THIS DRAWING SET IS NOT VALID IF THE PROJECT PARAMETERS ARE OUTSIDE OF THESE BOUNDARY CONDITIONS:


1. TWO STORY BUILDING WITH THE MAXIMUM MEAN ROOF HEIGHT AS SHOWN IN THE DRAWING SET.

2. ROOF AS SHOWN IN THE DRAWING SET.


3. BUILDING WIDTH AND LENGTH AS SHOWN IN THE DRAWING SET.

DETERMINE SITE SPECIFIC EXPOSURE CATEGORY FIRST AND THEN DETERMINE THE SITE SPECIFIC WIND SPEED AS SHOWN IN THE ATC ONLINE HAZARDS TOOL FOR THE PUERTO RICO BUILDING CODE 2018. CONFIRM THAT THE EXPOUSRE AND DESIGN WIND SPEED DO NOT EXCEED THAT SHOWN IN THE DESIGN DATA WITHIN THE DRAWING SET.

SITE SPECIFIC WIND AND SEISMIC INFORMATION FOR PUERTO RICO CAN BE FOUND BY USING THE ONLINE HAZARDS TOOL DEVELOPED BY ATC AND FOUND AT THE WEBSITE: HTTPS://HAZARDS.ATCOUNCIL.ORG/

ISOMETRIC VIEW OF
PRIMARY STRUCTURE WITH
MODULES ATTACHED

ISOMETRIC VIEW OF PRIMARY STRUCTURE WITH MODULES ATTACHED

ALL CONSTRUCTION MUST COMPLY WITH THE PUERTO RICO BUILDING CODE. YOU ARE REQUIRED TO OBTAIN THE NECESSARY BUILDING PERMITS FROM THE DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC). SIGNED AND SEALED DRAWINGS FOR PERMIT MUST BE SUBMITTED TO THE DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OFPe-DDEC).

STRUCTURES LOCATED IN SPECIAL FLOOD HAZARD AREAS SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL AND CERTIFIED TO COMPY WITH ASCE 24-14 FLOOD RESISTANT DESIGN AND CONSTRUCTION.

CONSULTANT:

CLIENT:

PROJECT NAME:

TWO STORY CMU AND 2ND FL. WOOD HOME

PUERTO RICO B APPRO	O RICO RESIDE UILDING CODE VED BY DDEC, I	EN DEVELOPED FOR THE USE OF NTS AND IS BELIEVED TO MEET THE PUERTO . ALL DRAWINGS MUST BE SEPARATELY PERMITS MANAGEMENT OFFICE F A BUILDING PERMIT APPLICATION.					
ISSUE	ISSUE LOG						
No.	No. Date Description						
		·					

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR

BUILDING REQUIREMENTS IN PUERTO RICO. THIS

PROFESSIONAL SEALS:		

SHEET TITLE:

Title Sheet

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:		101
QC Review:	3- 0	
Phase:		
	JOB No. Drawn By: Checked By: QC Review:	JOB No. Drawn By: Checked By: QC Review: Date Issued: Sheet Number: S-0

GENERAL STRUCTURAL NOTES

1.0 GENERAL

- 1.01 DRAWINGS SHOW TYPICAL AND CERTAIN SPECIFIC CONDITIONS ONLY. FOR DETAILS NOT SPECIFICALLY SHOWN, PROVIDE DETAILS SIMILAR TO THOSE SHOWN.
- 1.02 VERIFY ALL EXISTING CONDITIONS, DIMENSIONS AND ELEVATIONS BEFORE STARTING WORK. NOTIFY ENGINEER
- 1.03 STRUCTURE IS DESIGNED TO BE SELF-SUPPORTING AND STABLE ONCE IN SERVICE. NO CONSIDERATION FOR STABILITY AND SHORING IS ASSUMED BY THE ENGINEER DURING THE BUILDING PROCESS. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO ENSURE THE STABILITY AND SAFETY OF THE STRUCTURE AND ITS COMPONENTS BY DETERMINING AND IMPLEMENTING ERECTION PROCEDURES AND SEQUENCE OF CONSTRUCTION. THIS INCLUDES TEMPORARY BRACING AND SHORING AS WELL AS SOIL STABILIZATION AND PROTECTIVE MEASURES FOR ADJACENT EXISTING CONSTRUCTION.
- 1.04 COORDINATE STRUCTURAL CONTRACT DOCUMENTS WITH ARCHITECTURAL, MECHANICAL, ELECTRICAL, PLUMBING AND CIVIL. NOTIFY ENGINEER OF RECORD OF ANY CONFLICT AND/OR OMISSION. CONTRACTOR SHALL MAKE NO DEVIATION FROM DESIGN DRAWINGS WITHOUT WRITTEN APPROVAL OF THE ENGINEER OF RECORD. FOR ADDITIONAL OPENINGS NOT SHOWN ON THE STRUCTURAL DRAWINGS, SEE ARCHITECTURAL, MECHANICAL AND PLUMBING DRAWINGS.
- 1.05 FOR DIMENSIONS NOT SHOWN, SEE ARCHITECTURAL DRAWINGS.
- 1.06 REVIEW OF SUBMITTALS AND/OR SHOP DRAWINGS BY THE ENGINEER OF RECORD DOES NOT RELIEVE THE CONTRACTOR OF THE RESPONSIBILITY TO REVIEW AND CHECK SHOP DRAWINGS BEFORE SUBMITTAL TO THE ENGINEER OF RECORD. THE CONTRACTOR REMAINS SOLELY RESPONSIBLE FOR ERRORS AND OMISSIONS ASSOCIATED WITH THE PREPARATION OF SHOP DRAWINGS AS THEY PERTAIN TO MEMBER SIZES, DETAILS AND DIMENSIONS SPECIFIED IN THE CONTRACT DOCUMENTS. CONTRACTOR IS ALSO RESPONSIBLE FOR MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES OF CONSTRUCTION AND JOBSITE SAFETY.
- 1.07 ANY BRAND SPECIFIC MATERIALS MAY BE SUBSTITUTED W/ AN EQUIVALENT PRODUCT BY AN ALTERNATE MANUF. IF APPROVED BY THE ENGINEER OF RECORD, U.N.O. IF AN OPTION IS USED, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL NECESSARY CHANGES AND SHALL COORDINATE DETAILS.
- 1.08 NO STRUCTURAL MEMBER OR COMPONENT SHALL BE CUT, NOTCHED OR OTHERWISE ALTERED UNLESS APPROVED IN WRITING BY THE ENGINEER OF RECORD OR DETAILED IN THIS PLAN SET. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY AND ALL COSTS INCURRED BY THE ENGINEER OF RECORD FOR REVIEW OF SUCH DEVIATIONS AND IMPLEMENTATION OF APPROPRIATE SOLUTIONS.
- 1.09 PRIOR TO COMMENCING WORK, THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR REVIEWING AND COORDINATING WITH THE SUB-CONTRATORS WORK INDICATED ON STRUCTURAL DRAWINGS WITH ARCHITECTURE, SITE WORK, DELEGATED COMPONENTS, AND THE WORK OF OTHER ENGINEERING DISCIPLINES.
- 1.10 THE ENGINEER OF RECORD SHALL NOT BE CONSTRUED AS HAVING CONTROL, CHARGE, AND RESPONSIBILITY FOR THE ACTS AND OMISSIONS AND FOR FAILURE OF THE CONTRACTOR, SUB-CONTRACTOR, AND OTHER PERSONS PERFORMING THE WORK TO CARRY OUT SUCH WORK IN ACCORDANCE WITH THE STRUCTURAL DRAWINGS AND COLLECTIVE CONTRACT DOCUMENTS.
- 1.11 PERIODIC SITE OBSERVATION BY THE ENGINEER OF RECORD AND HIS / HER REPRESENTATIVES IS SOLELY FOR THE PURPOSE OF DETERMINING IF THE WORK OF THE CONTRACTOR IS PROCEEDING IN GENERAL ACCORDANCE WITH THE STRUCTURAL DRAWINGS AND SPECIFICATIONS. THIS LIMITED SITE OBSERVATION SHALL NOT BE CONSTRUED AS AN INSPECTION, EXHAUSTIVE, OR CONTINUOUS OBSERVATION TO VERIFY THE QUALITY AND QUANTITY OF THE WORK.
- 1.12 COMPLETE INSPECTION REQUIREMENTS SHALL BE AS DIRECTED BY THE LOCAL BUILDING DEPARTMENT.
- 1.13 THE USE OF REPRODUCTIONS OF THESE STRUCTURAL DRAWINGS AND SPECIFICATIONS BY ANY CONTRACTOR, SUBCONTRACTOR, ERECTOR, FABRICATOR OR MATERIAL SUPPLIER IN LIEU OF THE PREPARATION OF SHOP DRAWINGS IS PROHIBITED UNLESS PRIOR WRITTEN APPROVAL IS OBTAINED FROM THE ENGINEER OF RECORD.
- 1.14 IN THE EVENT THERE IS CONFLICTING INFORMATION BETWEEN THE DRAWINGS, SPECIFICATIONS AND LOCAL CODE APPLICATIONS OR ANY OTHER CONTROLLING AUTHORITY, THE MOST STRINGENT CONDITION SHALL APPLY

2.0 SOIL PREPARATION AND FOUNDATION

- 2.01 THE DESIGN OF FOUNDATIONS IS BASED ON AN ALLOWABLE SOIL BEARING PRESSURE OF 1,500 PSF.
- 2.02 A QUALIFIED GEOTECHNICAL ENGINEER SHALL VERIFY CONDITION AND/OR ADEQUACY OF ALL SUBGRADES, FILLS AND BACKFILLS BEFORE PLACEMENT OF FOUNDATIONS, FOOTINGS, SLABS, WALLS, FILLS, BACKFILLS, ETC. AND SHALL ANTICIPATE SOIL EROSION WHEN DETERMINING EXCAVATION DEPTH.
- 2.03 SOIL, DEWATERING, AND SITE PREPARATION SHALL BE IN ACCORDANCE WITH THE GEOTECHNICAL REPORT.
- 2.04 SOIL SUPPORTED FOUNDATIONS:

 A. REINFORCING SHALL BE SUPPORTED FROM ABOVE OR WITH 3" SLAB BOSTER WITH PLATE (SBP)

 AT 4'-0" O.C. MAXIMUM FOR ALL FOUNDATION REINFORCING.
- 2.05 REMOVE FREE WATER FROM EXCAVATIONS BEFORE PLACING CONCRETE.
- 2.06 REMOVE EXISTING TOP SOIL, FILL, PAVEMENT OR FOUNDATIONS FROM THE BUILDING AREA.
- 2.07 BACKFILL BELOW STRUCTURAL ELEMENTS TO BE A GRANULAR MATERIAL HAVING MAXIMUM SIZE OF 3" AND LESS THAN 12% PASSING THE #200 SIEVE SIZE. FILL TO BE PLACED IN LIFTS OF ONE-FOOT OR LESS COMPACTED TO A MINIMUM OF 95% OF THE MAXIMUM DRY DENSITY AS DETERMINED BY THE MODIFIED PROCTOR (ASTM:D1557).
- 2.08 DO NOT BACKFILL FOUNDATION WALLS UNTIL THE RESTRAINING SLABS OR ADEQUATE BRACING ARE IN PLACE. ALL BACKFILL SHALL BE PLACED AND COMPACTED IN ACCORDANCE WITH THE SPECIFICATION.
- 2.09 EXTERIOR SLABS SHALL SLOPE AWAY FROM THE STRUCTURE A MINIMUM OF 1/4" PER FOOT UNLESS NOTED
- 2.10 SLABS ON FILL TO BE PLACED OVER A 10-MIL POLYETHYLENE FILM VAPOR BARRIER INSTALLED ON COMPACTED SOIL. CONCRETE POURS TO BE PLACED IN A CHECKERBOARD PATTERN, LIMITED TO 400 SQ. FT. OR 20 FEET IN ANY DIRECTION. AS AN ALTERNATIVE, SLABS MAY BE POURED CONTINUOUSLY, HOWEVER, THEY MUST BE SAWN AS SOON AS THE SLAB WILL SUPPORT THE WEIGHT OF THE SAW AND OPERATOR AND THE SAW BLADE WILL PRODUCE CLEAN CUTS WITHOUT DISLODGING AGGREGATE (7 HOURS MAX). SAW CUT TO BE A MINIMUM OF 1/4 OF THE SLAB DEPTH AND 1/8 INCH WIDTH.
- 2.11 PROVIDE SOIL POISONING UNDER BUILDINGS FOR TERMITE PROTECTION.
- 2.12 HOUSES BUILT ON THE SIDES OF STEEP SLOPES REQUIRE SPECIAL DESIGN GUIDANCE. THESE HOMES ARE OFTEN SET ON EXPOSED POSTS OR COLUMNS. WALLS, POSTS, AND COLUMNS SHALL BE PROPERLY BRACED TO PREVENT COLLAPSE DURING AN EARTHQUAKE. FOUNDATIONS SHALL BE PROPERLY EMBEDDED IN CONSIDERATION OF ALL DESIGN FORCES AND POTENTIAL IMPACTS OF EROSION. CONSULT A PUERTO RICO LICENSED PROFESSIONAL ARCHITECT OR ENGINEER FOR DESIGN GUIDANCE IN SUPPORTING A HOME ON A STEEP SLOPE. IT IS RECOMMENDED TO PROVIDE ADDITIONAL ANCHORAGE FOR EACH FLOOR SYSTEM TO THE UPHILL FOUNDATION AND SUPPLEMENTAL ANCHORAGE, STRAPPING, AND BRACING OF CRIPPLE WALLS.
- 2.13 A REGISTERED GEOTECHNICAL ENGINEER SHALL PERFORM A SLOPE STABILITY ANALYSIS ON STEEP SLOPES AND ADDITIONAL STABILIZING DESIGN OF KNEEWALLS OR WIDER GRADE BEAMS MAY BE REQUIRED IN THE DESIGN.

3.0 REINFORCED CONCRETE

- 3.01 PRIOR TO CASTING FOUNDATIONS, PREPARE THE SITE IN ACCORDANCE WITH PLANS, SPECIFICATIONS AND REQUIRED COMPACTION.
- 3.02 ALL CONCRETE WORK SHALL CONFORM TO ACI 301-10, SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS. DESIGN IS BASED ON ACI 318-14, BUILDING CODE REQUIREMENTS FOR REINF. CONCRETE.
- 3.03 UNLESS NOTED OTHERWISE, ALL CONCRETE SHALL BE NORMAL WEIGHT AND HAVE THE FOLLOWING MINIMUM 28-DAY COMPRESSIVE STRENGTHS:
- FOUNDATIONS 3,000 PSI SLABS-ON-GRADE 3,000 PSI WALLS 3.000 PSI
- 3.04 USE OF CALCIUM CHLORIDE, CHLORIDE IONS OR OTHER SALTS IN CONCRETE IS NOT PERMITTED.
- 3.05 CHAMFER OR ROUND ALL EXPOSED CORNERS MINIMUM 3/4".
- 3.06 DETAIL CONCRETE REINFORCEMENT AND ACCESSORIES IN ACCORDANCE WITH ACI 315-18, DETAILING MANUAL.
- 3.07 REINFORCING STEEL SHALL CONFORM TO ASTM A615, GRADE 60, UNLESS NOTED OTHERWISE.
- 3.08 WELDED WIRE FABRIC (MESH) SHALL CONFORM TO ASTM A185 AND SHALL BE PROVIDED IN FLAT SHEETS. LAP EDGES 3 CROSS WIRES MINIMUM.
- 3.09 PROVIDE CONTINUOUS REINFORCEMENT WHEREVER POSSIBLE; SPLICE ONLY AS SHOWN OR APPROVED; STAGGER SPLICES WHERE POSSIBLE; USE FULL TENSION SPLICE (CLASS "B") FOR CONTINUOUS REINF. AND MATCHING DOWELS U.N.O. LAP SPLICES SHALL BE 57 BAR DIAMETERS FOR BARS SMALLER THAN #7 AND 72 BAR DIAMETERS FOR #7 & LARGER.

- 3.10 REINFORCING STEEL SHALL HAVE THE FOLLOWING CONCRETE COVER UNLESS NOTED OTHERWISE A. CONCRETE CAST AGAINST EARTH (NOT FORMED) . . 3"
 B. FORMED CONCRETE EXPOSED TO THE EARTH OR WEATHER
- 3.11 DO NOT PLACE PIPES OR DUCTS EXCEEDING ONE-THIRD THE SLAB OR WALL THICKNESS WITHIN THE SLAB OR WALL UNLESS SPECIFICALLY SHOWN AND DETAILED ON STRUCTURAL DRAWINGS. ANY PIPES SHALL BE BETWEEN THE OUTER HORIZONTAL AND VERTICAL LAYERS OF REINF.
- 3.12 DO NOT WELD OR TACK WELD REINFORCING STEEL UNLESS APPROVED OR DIRECTED BY THE ENGINEER OF
- 3.13 REINFORCE SLAB-ON-GRADE AT ALL PENETRATIONS AND AT RE-ENTRANT CORNERS. PLACE THREE #3x3'-0 AROUND FLOOR DRAINS. PLACE #4x4'-0" (MIN.) AT RE-ENTRANT CORNERS. HOLD REINFORCING 1" CLEAR FROM
- 3.14 WALLS AND OTHER INTERSECTING ELEMENTS SHALL HAVE CORNER BARS TO PROVIDE CONTINUITY. USE CONCRETE STEEL REINFORCING INSTITUTE (CRSI) STANDARDS OR AS SHOWN ON THE DRAWINGS.
- 3.15 FINISH INTERIOR SLAB ON GRADES WITH A TROWEL FINISH.

4.0 SAWN LUMBER

4.01 DESIGN STANDARDS:

AMERICAN WOOD COUNCIL, "NATIONAL DESIGN SPECIFICATION (NDS) FOR WOOD CONSTRUCTION" (ANSI/AWC NDS-2018) WITH "NDS SUPPLEMENT", 2018 EDITION.

AMERICAN SOFTWOOD LUMBER STANDARD VOLUNTARY PRODUCT STANDARD PS20-15.

APA E30- THE ENGINEERED WOOD ASSOCIATION, "ENGINEERED WOOD CONSTRUCTION GUIDE", AND D510 "PANEL DESIGN SPECIFICATION", LATEST EDITIONS.

- 4.02 ALL WOOD FRAMING MEMBERS INCLUDING BUT NOT LIMITED TO WALL STUDS AND JOISTS, ARE INTENDED TO ACT AS A SYSTEM AS DETAILED IN THE STRUCTURAL DRAWINGS. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO ENSURE SAFETY AND STABILITY OF THE WOOD FRAMING SYSTEMS (I.E. TEMPORARY BRACING IF REQUIRED) DURING CONSTRUCTION.
- 4.03 ALL SAWN LUMBER SHALL CONFORM TO THE AMERICAN SOFTWOOD LUMBER STANDARD, PS20-15. LUMBER SIZES SHOWN ARE NOMINAL UNLESS NOTED OTHERWISE. LUMBER SHALL BE OF THE SPECIES AND GRADE SHOWN BELOW, UNLESS NOTED OTHERWISE:

<u>MEMBER</u>	GRADE	SPACING
WALL STUDS	SOUTHERN YELLOW PINE No.2	REF. PLANS
RAFTERS/JOISTS	SOUTHERN YELLOW PINE No.2	REF. PLANS
POST/COLUMNS	SOUTHERN YELLOW PINE No.2	REF. PLANS
SILL PLATE	SOUTHERN YELLOW PINE No.2	
DOUBLE TOP PLATE	SOUTHERN YELLOW PINE No.2	

- 4.04 ALL ATTACHMENTS OF WOOD FRAMING SHALL NOT BE LESS THAN THAT DESCRIBED IN TABLE "FASTENING SCHEDULE" ON SHEET S-004.
- 4.05 STORAGE OF ALL LUMBER AND TIMBER ON SITE SHALL BE KEPT OFF OF THE GROUND, UNDER COVER, AND PROTECTED FROM
- 4.06 ALL LUMBER IN CONTACT WITH THE GROUND OR CONCRETE SHALL BE PRESSURE TREATED.
- 4.07 ALL FASTENERS FOR PRESERVATIVE-TREATED AND FIRE-RETARDENT-TREATED WOODS AND ALL OTHER WOODS SHALL BE OF HOT-DIPPED ZINC COATED GALVANIZED STEEL OR STAINLESS STEEL. ALL FASTENERS SHALL FOLLOW CURRENT MANUFACTURER'S GUIDELINES BASED ON WEATHER EXPOSURE. STAINLESS STEEL OR HOT-DIPPED GALVANIZED FASTENERS SHALL BE USED TO MATCH THE CONNECTOR TYPE. AT A MINIMUM ALL FASTENERS SHALL BE HOT-DIPPED GALVANIZED MEETING ASTM A153. WHEN FASTENERS ARE USED AT PERMANENTLY EXPOSED EXTERIOR AREAS, FASTENERS SHALL BE STAINLESS STEEL. FOR HOMES LOCATED WITHIN 1 MILE OF THE OCEAN, FASTENERS SHALL BE HOT-TIPPED GALVANIZED G185 OR BE IN ACCORDANCE WITH FEMA TECHNICAL BULLETIN 8.
- 4.08 ALL METAL HARDWARE AND FRAMING ACCESSORIES SHALL BE MANUFACTURED BY SIMPSON STRONG-TIE COMPANY, MITEK USP, OR APPROVED EQUAL. ALL ITEMS SHALL BE INSTALLED PER THE MANUFACTURER'S INSTALLATION REQUIREMENTS. ALL CONNECTORS SHALL BE MINIMUM HOT-DIP GALVANIZED IN ACCORDANCE WITH ASTM A653, ASTM A123, OR HIGHER STANDARDS. STAINLESS STEEL CONNECTORS MAY ALSO BE USED IN LIEU OF HOT-DIP GALVANIZED CONNECTORS. ALL NAIL/BOLT HOLES SHALL BE FILLED WITH THE RECOMMENDED FASTENER UNLESS NOTED OTHERWISE.
- 4.09 ALL WALLS SHALL HAVE DOUBLE TOP PLATES AND SHALL BE SPLICED PER THE TYPICAL TOP PLATE SPLICE DETAIL ON S-014, UNLESS NOTED OTHERWISE. TOP PLATES AT WALL INTERSECTIONS SHALL BE LAPPED AND NAILED WITH (3) 16d NAILS.
- 4.10 WHERE ROOF MEMBERS OR ROOF TRUSSES ARE CONNECTED TO EXTERIOR WALLS OR WALLS W/ PLYWOOD SHEATHING, THE SPECIFIED HURRICANE CLIP SHALL BE PLACED ON THE SIDE OF THE WALL WITH SHEATHING.
- 4.11 HOLES FOR BOLTS SHALL BE DRILLED WITH A BIT OF THE SAME NOMINAL DIAMETER AS THE BOLT + 1/16". LEAD HOLES FOR LAG SCREWS SHALL BE DRILLED PER NDS.
- 4.12 ALL BOLTS, CARRIAGE BOLTS, LAG SCREWS, EXPANSION BOLTS, AND EPOXY BOLTS SHALL BE INSTALLED WITH STANDARD CUT WASHERS AND NUTS THAT BEAR DIRECTLY ON THE WOOD. ALL NUTS SHALL BE TIGHTENED AT THE TIME OF INSTALLATION AND RETIGHTENED IF NECESSARY, DUE TO WOOD SHRINKAGE, PRIOR TO CLOSE-IN OR AT THE COMPLETION OF THE PROJECT. BOLTS AND LAG SCREWS SHALL CONFORM TO ANSI/ASME STANDARD B18.2.1. WOOD SCREWS SHALL CONFORM TO B18.6.1. ALL BOLTS SHALL CONFORM TO ASTM A307 GRADE A UNLESS NOTED OTHERWISE. ALL SHALL BE GALVANIZED.
 - THE MINIMUM STRENGTHS FOR LAG SCREWS AND WOOD SCREWS SHALL BE AS FOLLOWS:

WOOD SCREW DIAMETER-INCHES	MIN. BENDING YIELD STRENGTH (PSI)	
0.138 (#6)	100,000	
0.151 (#7)	90,000	
0.164 (#8)	90,000	
0.177 (#9)	90,000	
0.190 (#10)	80,000	
0.216 (#12)	80,000	
0.246 (#14)	70,000	
WOOD SCREW DIAMETER-INCHES	MIN. BENDING YIELD STRENGTH (PSI)	
1/4"	70,000	
5/16"	60,000	
3/8" AND GREATER	45,000	

- 4.13 WOOD STUDS IN EXTERIOR WALLS AND BEARING PARTITIONS MAY BE CUT OR NOTCHED TO A DEPTH NOT EXCEEDING ¼ OF ITS WIDTH, PROVIDED NOT MORE THAN TWO SUCCESSIVE STUDS ARE NOTCHED OR CUT. BUNDLED STUDS UNDER POINTS OF CONCENTRATED LOADS SHALL NOT BE CUT OR NOTCHED. CUTTING AND NOTCHING OF STUDS TO A DEPTH NOT GREATER THAN 40% OF THE WIDTH OF THE STUD IS PERMITTED IN NON-BEARING PARTITIONS SUPPORTING NO LOADS OTHER THAN THE WEIGHT OF THE PARTITION.
- 4.14 A HOLE MAY BE BORED IN A WOOD STUD UP TO A DIAMETER OF 33% OF THE STUD WIDTH. BORED HOLES NOT GREATER THAN 60% OF THE WIDTH OF THE STUD ARE PERMITTED IN NON-BEARING PARTITIONS OR IN ANY WALL WHERE EACH BORED STUD IS DOUBLED, PROVIDED NOT MORE THAN TWO SUCCESSIVE DOUBLE STUDS ARE BORED. IN NO CASE, SHALL THE EDGE OF THE BORED HOLE BE NEARER THAN 5/8" TO THE EDGE OF THE STUD, BORED HOLES SHALL NOT BE LOCATED AT THE SAME SECTION OF THE STUD AS
- 4.15 END NOTCHES NOT EXCEEDING 1/4 THE DEPTH ARE PERMITTED FOR 2X FLOOR JOISTS OR RAFTERS. TAPER CUT FROM THE REDUCED DEPTH OF THE MEMBER TO THE FULL DEPTH AT A MINIMUM SLOPE OF (1) HORIZ./(1) VERT. DO NOT SQUARE CUT AN END NOTCH.
- 4.16 INTERIOR NOTCHES NOT EXCEEDING 1/6 THE DEPTH OF A 2X FLOOR JOIST OR RAFTER SHALL BE PERMITTED ONLY IN THE OUTER THIRD OF ANY SPAN. NOTCHES ARE NOT PERMITTED IN THE MIDDLE THIRD OF ANY SPAN NOR IN ANY LINTEL MEMBERS.
- 4.17 THE LENGTH OF NOTCHES IN FLOOR JOISTS SHALL NOT EXCEED 1/3 THE JOIST DEPTH.
- 4.18 HOLES BORED IN FLOOR JOISTS OR RAFTERS SHALL NOT BE WITHIN 2 INCHES OF THE TOP OR BOTTOM AND THE DIAMETER OF ANY SUCH HOLE SHALL NOT EXCEED 1/3 THE DEPTH OF THE MEMBER. HOLES SHALL NOT OCCUR WITHIN 12" OF THE EDGE OF ANY BEARING SUPPORT OR CONNECTION.

4.19 WHEN NAILS ARE USED AT PERMANENTLY EXPOSED EXTERIOR AREAS, NAILS SHALL BE STAINLESS STEEL (TYPE 316). NAILS THAT ARE NOT EXPOSED TO THE ELEMENTS BUT IN CONTACT WITH PRESERVATIVE TREATMENT LUMBER SHALL BE MINIMUM HOT-DIP GALVANIZED MEETING ASTM A153. ALL NAILS FOR STRUCTURAL WORK SHALL BE COMMON WIRE NAILS UNLESS NOTED OR DETAILED OTHERWISE MEETING ASTM F1667. HOLES SHALL BE PRE-DRILLED WHERE NECESSARY TO PREVENT SPLITTING. NAILS SHALL HAVE THE MINIMUM PROPERTIES SPECIFIED IN THE TABLE BELOW:

NAIL TYPE	SHANK DIAMETER-INCHES	MIN. PENETRATION-INCHES	MIN. BENDING YIELD STRENGTH (PSI)
6d	0.113	1.25	100,000
8d box	0.113	1.38	100,000
8d	0.131	1.38	100,000
10d box	0.128	1.50	100,000
10d	0.148	1.50	90,000
12d box	0.128	1.48	100,000
12d	0.148	1.48	90,000
16d box	0.135	1.63	100,000
16d	0.162	1.63	90,000
20d	0.192	1.92	80,000

- 5.01 STRUCTURAL WOOD PANELS SHALL CONFORM TO THE REQUIREMENTS OF ONE OF THE FOLLOWING STANDARDS AND PUBLICATIONS:
 - A. U.S. PRODUCT STANDARD PS1-95 FOR CONSTRUCTION AND INDUSTRIAL PLYWOOD.
 - U.S. PRODUCT STANDARD PS2-92 PERFORMANCE STANDARD FOR WOOD BASED STRUCTURAL USE PANELS.
 APA PRP-108 PERFORMANCE STANDARDS.
- ROOF AND WALL PANELS SHALL BE APA RATED, EXPOSURE 1, OSB WITH A MIN. 48/24 SPAN RATING UNLESS NOTED OTHERWISE ON THE DRAWINGS. SHEATHING SHALL BE EXTERIOR GRADE WHERE EITHER SIDE OF SHEATHING IS PERMANENTLY EXPOSED TO WEATHER. SHEATHING SHALL RUN CONTINUOUS OVER AT LEAST THREE SPANS.
- 5.03 ALL ROOF SHEATHING SHALL BE INSTALLED WITH THE FACE GRAIN PERPENDICULAR TO THE SUPPORTS. ROOF SHEATHING SHALL BE NAILED AND GLUED TO WOOD FRAMING IN ACCORDANCE WITH THE PUERTO RICO CODE AND AMERICAN PLYWOOD ASSOCIATION (APA) SPECIFICATION AFG-01, ADHESIVES FOR FIELD GLUING PLYWOOD TO WOOD FRAMING.
- 5.04 ALL SHEATHING PANELS SHALL BE INSTALLED WITH END JOINTS STAGGERED UNLESS NOTED OTHERWISE.
- 5.05 STAINLESS STEEL (TYPE 316) NAILS SHALL BE USED AT PERMANENTLY EXPOSED EXTERIOR AREAS. ALL NAILS THAT ARE NOT EXPOSED TO THE ELEMENTS BUT IN CONTACT WITH PRESERVATIVE TREATMENT LUMBER SHALL BE MINMUM HOT-DIPPED GALVANIZED MEETING ASTM A153.
- 5.06 3x BLOCKING SHALL BE PROVIDED AT PLYWOOD SHEATHED INTERIOR AND EXTERIOR WALLS. BLOCKING SHALL BE INSTALLED AT ALL WALL AND ROOF PANEL EDGES PERPENDICULAR TO FRAMING MEMBERS AND AS SHOWN ON PLAN.

6.0 PRE-FABRICATED WOOD TRUSSES

5.0 WOOD STRUCTURAL PANELS

- 6.01 DESIGN STANDARDS:
- TRUSS PLATE INSTITUTE. "NATIONAL DESIGN STANDARD FOR METAL-PLATE CONNECTED WOOD TRUSS CONSTRUCTION" (ANSI/TPI 1-2014)

ROOF TRUSSES

6.02 MINIMUM DESIGN LOADS:

	_	
TOP CHORD	LIVE LOAD: SUPERIMPOSED DEAD LOAD:	20 PSF 5 PSF
BOTTOM CHORD	LIVE LOAD: SUPERIMPOSED DEAD LOAD:	20 PSF 5 PSF
DEFLECTION:	LIVE LOAD: TOTAL LOAD:	L/240 MAX. L/180 MAX.

- WOOD TRUSSES SHALL BE DESIGNED TO RESIST DOWNWARD AND UPLIFT WIND PRESSURE NORMAL TO THE TOP CHORD. SEE DESIGN DATA DRAWING FOR WIND LOAD CRITERIA. ROOF TRUSS AT GABLE END TO BE DESIGNED FOR LATERAL WIND PRESSURE. SEE PLANS FOR GABLE END BRACING DETAILS.
- 6.03 FABRICATION AND PLACEMENT REQUIREMENTS:
 ALL CONNECTIONS BETWEEN TRUSSES AND/OR TRUSSES AND CONVENTIONAL FRAMING SHALL BE DESIGNED AND DETAILED BY THE TRUSS
 FABRICATOR. TRUSSES SHALL BE ASSEMBLED, HANDLED, STORED, AND ERECTED IN ACCORDANCE WITH STANDARDS OF THE TRUSS PLATE
 INSTITUTE. BOTTOM CHORD BRACING AND BRIDGING SHALL BE LOCATED AND DESIGNED BY THE TRUSS FABRICATOR AND INSTALLED BY THE TRUSS
 ENOTITION.
- 6.04 SHOP DRAWINGS:
 SHOP DRAWINGS SEALED BY AN ENGINEER REGISTERED IN PUERTO RICO SHALL BE SUBMITTED FOR REVIEW, DESCRIBING ALL DIMENSIONS, SIZES AND GRADE OF LUMBER, DESIGN LOADS, FORCES, REACTIONS, AND CONNECTIONS FOR ALL MEMBERS OF EACH TRUSS AND TRUSS CONNECTIONS.
- 6.05 THE TRUSS MANUFACTURER SHALL DESIGN THE TRUSSES AND GIRDER TRUSSES FOR THE LOADS INDICATED ON THE STRUCTURAL DRAWINGS.
- 6.06 THE TRUSS MANUFACTURER SHALL ACCEPT FULL RESPONSIBILITY FOR THE DESIGN. THE TRUSS ENGINEER SHALL PREPARE DESIGN CALCULATIONS AND DRAWINGS. WHICH SHALL BE SEALED. SIGNED. AND DATED BY THE RESPONSIBLE PROFESSIONAL ENGINEER REGISTERED IN PUERTO RICO.

SPECIAL LOAD CONSIDERATIONS, SUCH AS OVERFRAMING, ETC. SHALL BE ACCOUNTED FOR IN THE DESIGN.

- 6.07 THE DESIGN SHALL INCLUDE INTERNAL CONNECTIONS AND CONNECTIONS BETWEEN TRUSSES. CONNECTIONS TO OTHER STRUCTURAL MEMBERS
- AND ARCHITECTURAL SYSTEMS SHALL BE INCLUDED. TYPICAL DETAILS OF CONNECTIONS SHALL BE SHOWN.

 6.08 THE MEMBER SIZE AND PROPERTIES FOR EACH MEMBER USED SHALL BE SHOWN, CLEARLY INDICATING WHERE EACH MEMBER IS BEING USED.
- 6.09 PARTICULAR ATTENTION SHALL BE GIVEN TO HEEL HEIGHTS AND TOP CHORD SLOPES TO ENSURE THAT THE FASCIA DETAILS ARE CONSISTENT, ALIGNED, AND IN ACCORDANCE WITH THE ARCHITECTURAL DRAWINGS.
- 6.10 THE MAXIMUM SPACING OF THE TRUSSES SHALL BE 24 INCHES FOR ROOF TRUSSES. THE SELECTED SPACING MUST BE COORDINATED WITH THE TRUSS ENGINEER, THE MECHANICAL ENGINEER, THE FABRICATOR, THE DECKING, HVAC AND ELECTRICAL SUBCONTRACTORS, ERECTORS, DRYWALLER, AND ANY OTHER RELATED SUBCONTRACTORS. THE SPACING SHALL BE DENOTED IN SHOP DRAWINGS FOR EACH TRADE.
- 6.11 A SAMPLE SUBMITTAL OF THE TYPICAL TRUSS AND TRUSS GIRDER TYPES SHALL BE SUBMITTED FOR PRELIMINARY REVIEW PRIOR TO COMPLETION OF DESIGN CALCULATIONS AND DRAWINGS.
- 6.12 COMPLETE ERECTION PLANS AND DETAILS SHALL BE SUBMITTED TO EACH TRADE FOR REVIEW.
- 6.13 THE TRUSS ENGINEER SHALL BE RESPONSIBLE FOR ANY FIELD COORDINATION ISSUES WHICH MAY ARISE REGARDING THE TRUSSES, OPENINGS IN TRUSSES, AND CONNECTIONS OF TRUSSES.
- 6.14 TRUSS ENGINEER SHALL VERIFY THAT DETAILS OF CONNECTIONS SHOWN ARE APPROPRIATE FOR THE TRUSS DESIGN. IF NOT, THE PROPOSED REVISIONS TO DETAILS SHALL BE SUBMITTED.
- 6.15 SHIM PLATES SHALL BE INSTALLED AS REQUIRED TO PROVIDE A POSITIVE BEARING SURFACE BETWEEN THE TRUSSES AND WALLS. EACH TRUSS SHALL BEAR ON EACH WALL WITH WHICH IT INTERSECTS AS SHOWN ON THE PLAN AND IN THE LOADING DIAGRAMS. UNLESS SPECIFICALLY NOTED, THERE SHALL NOT BE ANY SPACE BETWEEN THE TRUSSES AND THE STRUCTURAL WALLS.
- 6.16 LOADS SHOWN ABOVE ARE SUPERIMPOSED LOADS AND DO NOT INCLUDE THE TRUSS SELF-WEIGHT. TRUSS MANUFACTURER SHALL CONSIDER THE TRUSS SELF-WEIGHT IN THE TRUSS DESIGN.
- TRUSS TOP CHORD SHALL BE A MINIMUM 3x MEMBER. TRUSS TO STOP AT WALL TOP PLATES. SEE 4/S-015 FOR SISTERED PRESSURE TREATED EAVE OVERHANG MEMBER TO BE DESIGNED BY TRUSS MANUFACTURER.

ALL CONSTRUCTION MUST COMPLY WITH THE PUERTO RICO BUILDING CODE.
YOU ARE REQUIRED TO OBTAIN THE NECESSARY BUILDING PERMITS FROM THE
DEPARTMENT OF PLANNING AND RESOURCES. SIGNED AND SEALED DRAWINGS
FOR PERMIT MUST BE SUBMITTED TO THE DEPARTMENT OF ECONOMIC
DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE.

STRUCTURES LOCATED IN SPECIAL FLOOD HAZARD AREAS SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL AND CERTIFIED TO COMPY WITH ASCE 24-14 FLOOD RESISTANT DESIGN AND CONSTRUCTION.

NOT FOR CONSTRUCTION Phase:

CLIENT:

PROJECT NAME:

TWO STORY CMU AND 2NI FL. WOOD

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG

No.	Date	Description
		-

PROFESSIONAL SEALS:

SHEET TITLE:

General Notes

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:	C 00	20.4
QC Review:	S-00	JZA
Phase:		

7.0 MASONRY

- 7.01 CONCRETE MASONRY DESIGN AND CONSTRUCTION SHALL CONFORM TO TMS 402/602-16 BUILDING CODE REQUIREMENTS FOR MASONRY STRUCTURES.
- 7.02 PROVIDE NORMAL WEIGHT, HOLLOW, LOAD-BEARING CONCRETE MASONRY UNITS (CMU) CONFORMING TO ASTM C90, GRADE N, TYPE II.
- 7.03 PROVIDE MASONRY CONSTRUCTION WITH MINIMUM COMPRESSIVE STRENGTH, f'm = 1,900 PSI.
- 7.04 PROVIDE TYPE "S" MORTAR IN ACCORDANCE WITH ASTM C270.
- 7.05 VERTICAL REINFORCING SHALL BE HELD IN POSITION WITH BAR POSITIONERS AT TOP OF THE GROUT POUR AT SPACINGS AS SHOWN ON THE PLANS.
- 7.06 PROVIDE HORIZONTAL JOINT REINFORCEMENT COMPLYING WITH ASTM A82, NO. 9 GAUGE OR HEAVIER, LADDER TYPE, ZINC COATED, PLACED 16" ON CENTER, UNLESS NOTED OTHERWISE. LADDER RUNGS SHALL BE POSITIONED TO COMPLETELY CLEAR CELL OPENINGS. LAP JOINT REINF. 1 FULL CROSS WIRE SPACING PLUS 2" (18" MIN FOR CROSS WIRE SPACING OF 16" ON CENTER), BUT NOT LESS THAN 12".
- 7.07 PROVIDE RUNNING BONDS WITH VERTICAL JOINTS LOCATED AT CENTER OF MASONRY UNITS IN THE ALTERNATE COURSE BELOW.
- 7.08 PROVIDE FOUNDATION DOWELS WITH HOOKS SIZED AND SPACED TO MATCH CMU VERTICAL REINFORCING. DOWELS SHALL LAP WALL VERTICALS SEE FASTENING SCHEDULES FOR MASONRY LAP SPLICE REQUIREMENTS.
- 7.09 REINFORCING STEEL SHALL CONFORM TO ASTM A615, GRADE 60, UNLESS NOTED OTHERWISE.
- 7.10 PROVIDE FINE GROUT FOR REINFORCED MASONRY IN ACCORDANCE WITH ASTM C476 WITH MINIMUM 28-DAY COMPRESSIVE STRENGTH OF 2,000 PSI. GROUT SHALL BE OF FLUID CONSISTENCY, WHICH MEANS AS FLUID AS POSSIBLE FOR POURING WITHOUT SEGREGATION OF THE CONSTITUENT PARTS. GROUT SLUMP SHALL BE 8 TO 10 INCHES. WATER CEMENT RATIO SHALL BE REDUCED AND WATER REDUCERS USED AS REQUIRED TO MAINTAIN SLUMP WHEN PLACED IN LOW ABSORPTION CMU. FILL ALL CELLS BELOW GRADE WITH GROUT. ALL GROUT SHALL BE CONSOLIDATED AT THE TIME OF POURING BY VIBRATING AND THEN RECONSOLIDATED AGAIN BY PUDDLING LATER, BEFORE PLASTICITY IS LOST. TYPICALLY WITHIN 10 TO 15 MINUTES. WHEN GROUTING S STOPPED FOR ONE HOUR OR LONGER, CONSTRUCTION JOINTS SHALL BE FORMED BY STOPPING THE POUR OF GROUT 1 1/2" BELOW THE TOP OF THE UPPERMOST UNIT.
- 7.11 ALL VERTICAL REINFORCING SHALL HAVE A STANDARD HOOK WHEN TERMINATING INTO A BOND BEAM.
- 7.12 ALL VERTICAL REINFORCING SHALL BE LOCATED IN GROUTED CELLS.

8.0 MISCELLANEOUS

- 8.01 SUBSTITUTION OF EXPANSION ANCHORS FOR ADHESIVE ANCHORS OR EMBEDDED ANCHORS SHOWN ON THE DRAWINGS WILL NOT BE PERMITTED UNLESS APPROVED BY THE ENGINEER OF RECORD IN ADVANCE.
- 8.02 THE CONTRACTOR SHALL PROVIDE THE FOLLOWING SERVICES AS PART OF THE CONSTRUCTION SCOPE OF WORK:
- VERIFICATION OF ALL DIMENSIONS, ELEVATIONS, OPENING SIZES, MECHANICAL EQUIPMENT WEIGHTS PRIOR TO STARTING WORK.
- REMOVE ALL ABANDONED FOUNDATIONS, UTILITIES, PIPELINES, ETC. THAT INTERFERE WITH NEW CONSTRUCTION. REVIEW AND APPROVE ALL SHOP DRAWINGS PRIOR TO SUBMITTAL, NOTING CHANGES MADE WHICH DO NOT COMPLY WITH DESIGN DRAWINGS. PROVIDE TEMPORARY BRACING AND SHORING TO PREVENT EXCESSIVE DEFLECTIONS AND DAMAGE DURING CONSTRUCTION. DESIGN OF
- TEMPORARY BRACING AND SHORING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR. SUPPORT OF CEILING SYSTEMS, FOLDING PARTITIONS, TOILET PARTITIONS, COUNTERS, MISCELLANEOUS EQUIPMENT, AND WINDOW SYSTEMS AS DEFINED IN THE ARCHITECTURAL PLANS.

9.0 SPECIAL INSPECTIONS

- 9.01 PER THE REQUIREMENTS OF CHAPTER 17, SECTION 1704.1 OF THE REFERENCED BUILDING CODE, SPECIAL INSPECTION IS REQUIRED FOR THE PROPOSED BUILDING CONSTRUCTION. SPECIAL INSPECTION INVOLVES THE VERIFICATION OF COMPLIANCE OF MATERIALS, INSTALLATION, FABRICATION, ERECTION AND OR PLACEMENT OF COMPONENTS WITH THE OFFICIAL SET OF CONSTRUCTION DOCUMENTS AND REFERENCED STANDARDS. SPECIAL INSPECTION IS PART OF THE PERMIT APPLICATION PROCESS FUNDED BY THE OWNER OR OWNER'S AGENT.
- 9.02 A STATEMENT OF SPECIAL INSPECTION LISTING THE REQUIREMENTS ALONG WITH A SCHEDULE OF TESTING, SUBMITTAL REVIEWS, AND FIELD OBSERVATION REQUIREMENTS HAS BEEN PREPARED AND DISPLAYED ON THIS DRAWING SET. THIS STATEMENT INCLUDES A COMPLETE LIST OF MATERIAL AND ACTIVITY REQUIRING INSPECITON. IT IS THE RESPONSIBILITY OF ALL PARTIES TO BECOME FAMILIAR WITH THIS REQUIREMENT AND UNDERSTAND THE GUIDELINES AND REQUIREMENTS OF EACH PARTY INVOLVED WITH THE CONSTRUCTION. THE SPECIAL INSPECTOR COORDINATOR SHALL COORDINATE WITH THE OWNER, CONTRACTOR, AND THE DESIGN PROFESSIONALS AND SCHEDULE THE INSPECTIONS ACCORDINGLY.

10.0 SAFE ROOM

- 10.01 SAFE ROOM WALLS TO BE FULLY CONSTRUCTED AND INSPECTED PRIOR TO COMMENCING CONSTRUCTION ON EXTERIOR WALLS.
- 10.02 EXTERIOR AND INTERIOR SIDES OF SAFE ROOM WALLS MUST HAVE TOOLED JOINTS.
- 10.03 MECHANICAL AND ELECTRICAL PENETRATIONS SHOULD BE KEPT TO A MINIMUM. ANY OPENINGS LARGER THAN 3 1/2" SQUARE OR 2" IN DIAMETER SHALL BE PROTECTED BY BAFFLES, COWLINGS, OR OTHER MEANS. THESE COVERINGS SHOULD MEET PRESSURE TESTING AND IMPACT CRITERIA AS SPECIFICED IN THESE PLANS.
- 10.04 THE SELECTED SAFE ROOM DOOR SHALL MEET THE DESIGN CRITERIA OF 2015 FEMA P-361 AND 2014 ICC-500. DOOR SHALL BE A TESTED ASSEMBLY AND INSTALLED PER MANUFACTURER'S RECOMMENDATIONS.
- 10.05 IF AN IMPACT RESISTANT GLAZING IS SELECTED FOR THE SAFE ROOM WINDOW(S) THE SELECTED WINDOW(S) SHALL MEET THE DESIGN CRITERIA OF 2015 FEMA P-361 AND 2014 ICC-500. WINDOW SHALL BE A TESTED ASSEMBLY AND INSTALLED PER MANUFACTURER'S RECOMMENDATIONS.
- 10.06 IF A WINDOW PROTECTION ASSEMBLY IS SELECTED FOR THE SAFE ROOM, IT SHALL MEET THE DESIGN CRITERIA OF 2015 FEMA P-361 AND 2014 ICC-500. WINDOW PROTECTION ASSEMBLY SHALL BE A TESTED ASSEMBLY AND INSTALLED PER MANUFACTURER'S RECOMMENDATIONS.

COMMON ABBREVIATIONS

ARCH	. ARCHITE	CT	IN.	INCHES
B/	BOTTOM		INFO.	INFORMATION
BRG.	BEARING		INT.	INTERIOR
BOTT.			JNT.	JOINT
C/C		TO-CENTER	K	KIPS
CIP.	CAST IN F		KSI	KIPS PER SQUARE INCH
C.J.	CONTRO		LAT.	LATERAL
CLR.	CLEAR	_ JOHN I	LBS.	POUNDS
COL.	COLUMN		LLH	LONG LEG HORIZONTAL
CONC		ГС	LLV	LONG LEG HORIZONTAL
CONN			L.W.	LONG WAYS
CONT			MANUF.	MANUFACTURER
COOR				MAXIMUM
			MAX. MECH.	
CMU		TE MASONRY UNIT		MECHANICAL
DIM.	DIMENSIO	JN	MIN.	MINIMUM
DTL.	DETAIL	5	N.T.S.	NOT TO SCALE
DIA.	DIAMETE		NO.	NUMBER (BAR)
DIST.	DISTANC		O.C.	ON CENTER
DWGS		S	OPNG.	OPENING
EA.	EACH		PL.	PLATE
EL.	ELEVATION		PREFAB.	PREFABRICATED
E.F.	EACH FA		PROJ.	PROJECTION
EMBE			PSF	POUNDS PER SQUARE FOOT
ENG.	ENGINEE		PSI	POUNDS PER SQUARE INCH
E.O.R.		R OF RECORD	P.T.	PRESSURE TREATED
EQ.	EQUAL		QTY	QUANTITY
E.S.	EACH SID		REF.	REFERENCE
E.W.	EACH WA	·Υ	REINF.	REINFORCED OR REINFORCING
EXP.	EXPANSI	NC	SCH.	SCHEDULE
EXT.	EXTERIO	₹	S.F.	STEPPED FOOTING
FABR.	FABRICA ⁻	ΓOR	SPA.	SPACING
F.F.	FINISHED	FLOOR	SIM.	SIMILAR
FFE	FINISHED	FLOOR ELEVATION	SQU.	SQUARE
FT.	FEET		SQ. FT.	SQUARE FEET
FDN.	FOUNDA ⁻	TION	STL.	STEEL
GA.	GAUGE		STRUC.	STRUCTURAL
GALV.	GALVANI	ZED	S.W.	SHORT WAYS
HGT.	HEIGHT		SYP	SOUTHERN YELLOW PINE
HKD.	HOOKED		T/	TOP OF
HORIZ	z. Horizon	TAL	TDD.	TRUSS DESIGN DRAWINGS
HR.	HOUR		TYP.	TYPICAL
H.S.	HEADED	STUD	U.N.O.	UNLESS NOTED OTHERWISE
			VERT.	VERTICAL
			VCJ	VERTICAL CONTROL JOINT
NOTE: ADDDEVIATIONS MAY BE O			VMCJ	VERTICAL MASONRY CONTROL JOINT
NOTE: ABBREVIATIONS MAY BE S			W/	WITH
WITHOUT PERIODS (IE, TYP OR TY	YP. FUR TYPICAL)		W/0	WITHOUT

WELDED WIRE FABRIC

DESIGN CRITERIA FOR PRIMARY STRUCTURE AND MODULES

DESIGN CRITERIA – CODES AND SPECIFICATIONS

- 1. 2018 PUERTO RICO BUILDING CODE.
- ACI 318-14-BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE.
- ACI 301-10-SPECIFICATIONS FOR STRUCTURAL CONCRETE FOR BUILDINGS.
- ASCE/SEI 7-16-MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES.
- TMS 402/602-16 BUILDING CODE REQUIREMENTS AND SPECIFICATIONS FOR MASONRY STRUCTURES.
- NDS 2018-NATIONAL DESIGN ASSOCIATION SPECIFICATION FOR WOOD CONSTRUCTION. ANSI/TP1 1-2014-NATIONAL DESIGN STANDARD FOR METAL-PLATE CONNECTED WOOD TRUSS CONSTRUCTION.

THE WEIGHT OF ALL PERMANENT CONSTRUCTION INCLUDING BUT NOT LIMITED TO: WALLS, FLOORS, CEILINGS, ROOF CLADDING.

SELF WEIGHT LIVE LOAD

BALCONY. 40 PSF SECOND FLOOR 40 PSF 40 PSF GUARDRAILS AND HANDRAILS 200 LBS. IN ANY DIRECTION AT ANY POINT ALONG THE TOP

GUARDRAIL IN FILL COMPONENTS . .40 PSF OR 300 POUND CONCENTRATED LOAD ON 4 SQ. INCHES OF TREAD

BASIC WIND SPEED (ULTIMATE). 190 MPH IF EXPOSURE D 147 MPH IF EXPSOURE D BASIC WIND SPEED (NOMINAL). BASIC WIND SPEED (ULTIMATE) 210 MPH IF EXPOSURE C BASIC WIND SPEED (NOMINAL). 163 MPH IF EXPSOURE C 255 MPH IF EXPOSURE B BASIC WIND SPEED (ULTIMATE) BASIC WIND SPEED (NOMINAL). 194 MPH IF EXPSOURE B ULTIMATE BASIC DESIGN WIND SPEEDS CORRESPOND TO PUERTO RICO SPECIAL WIND HAZARD MAP ADOPTED IN THE 2018 PUERTO RICO BUILDING CODE

ENCLOSURE CLASSIFICATION. . . PARTIALLY OPEN INTERNAL PRESSURE COEFFICIENTS.. +/- 0.18 SEISMIC IMPORTANCE FACTOR. D (STIFF SOIL) SITE CLASS.

SEISMIC FORCE RESISTING SYSTEM

RISK CATEGORY..

BEARING WALL SYSTEM (PRIMARY STRUCTURE 1ST STORY): SPECIAL REINFORCED MASONRY SHEAR WALLS ANALYSIS METHOD. EQUIVALENT LATERAL FORCE **DESIGN BASE SHEAR** . .16.1 KIPS OVERSTRENGTH FACTOR

BEARING WALL SYSTEM (PRIMARY STRUCTURE 2ND STORY): LIGHT-FRAMED WOOD WALLS SHEATHED WITH WOOD STRUCTURAL PANELS RATED FOR SHEAR RESISTANCE EQUIVALENT LATERAL FORCE ANALYSIS METHOD . 6 1/2

. .3.83 KIPS

BEARING WALL SYSTEM (MODULE STRUCTURES) SPECIAL REINFORCED MASONRY SHEAR WALLS

EQUIVALENT LATERAL FORCE ANALYSIS METHOD. **DESIGN BASE SHEAR** . .9.16 KIPS OVERSTRENGTH FACTOR

DESIGN CRITERIA FOR SAFE ROOM

DESIGN CRITERIA – SAFE ROOM

- 2018 INTERNATIONAL RESIDENTIAL CODE
- 2018 INTERNATIONAL BUILDING CODE
- FEMA P-361 THIRD EDITION

SEISMIC DESIGN CATEGORY.

DESIGN BASE SHEAR.

OVERSTRENGTH FACTOR

ICC 500-2014

DESIGN LOADS

THE WEIGHT OF ALL PERMANENT CONSTRUCTION INCLUDING BUT NOT LIMITED TO: WALLS. FLOORS, CEILINGS, ROOF CLADDING.

SELF WEIGHT COLLATERAL LOAD. . . 5 PSF LIVE LOAD ROOF. 150 PSF WIND LOAD

BASIC WIND SPEED (ULTIMATE). 250 MPH BASIC WIND SPEED (NOMINAL). 194 MPH RISK CATEGORY. EXPOSURE CATEGORY. ENCLOSURE CLASSIFICATION. PARTIALLY ENCLOSED INTERNAL PRESSURE COEFFICIENTS. +/- 0.55

0.36

SEISMIC LOAD 1.0 1.35 SEISMIC IMPORTANCE FACTOR 0.53 D (STIFF SOIL)

SEISMIC FORCE RESISTING SYSTEM

BEARING WALL SYSTEM:	
SPECIAL REINFORCED MASONRY SHEAR WALL	
R	5
Cs	0.181
DESIGN BASE SHEAR	.9.48 KIPS
OVERSTRENGTH FACTOR	. 2 1/2

- FLOOD HAZARD AREAS SUBJECT TO HIGH VELOCITY WAVE ACTION (V ZONES) AND COASTAL A ZONES. **FLOODWAYS**
- ANY AREAS SUBJECT TO STORM SURGE INUNDATION ASSOCIATED WITH ANY MODELED HURRICANE CATEGORY, INCLUDING COASTAL WAVE EFFECTS.

B. THE LOWEST FLOOR USED FOR THE OCCUPIED RESIDENTIAL SAFE ROOM SHALL BE ELEVATED TO THE HIGHER OF THE **ELEVATIONS DETERMINED BY:**

THE FLOOD ELEVATION, INCLUDING COASTAL WAVE EFFECTS, HAVING A 0.2 PERCENT ANNUAL CHANCE OF BEING EQUALED OR EXCEEDED IN ANY GIVEN YEAR; OR

THE MINIMUM ELEVATION OF THE LOWEST FLOOR REQUIRED BY THE AUTHORITY HAVING JURISDICTION FOR THE

- THE FLOOD ELEVATION CORRESPONDING TO THE HIGHEST RECORDED FLOOD ELEVATION IF A FLOOD HAZARD STUDY HAS NOT BEEN CONDUCTED FOR THE AREA; OR
- LOCATION WHERE THE SAFE ROOM IS INSTALLED. THE FLOOD ELEVATION HAVING A 1 PERCENT ANNUAL CHANCE OF BEING EQUALED OR EXCEEDED IN ANY GIVEN

SAFE ROOM DOOR, WINDOW AND/OR AND WINDOW PROTECTION ASSEMBLY

A. MISSILE IMPACT CRITERIA

VERTICAL SURFACES. 15 POUND 2 x 4 AT 100 MPH 2. HORIZONTAL SURFACES . . 15 POUND 2 x 4 AT 67 MPH

	STATEMENT OF SPECIA	L INSPECTIONS	
SPE	CIAL INSPECTION TYPE	CONTINUOUS	PERIODIC
1.	CONCRETE VERIFICATION/INSPECTION		
a.	Inspect reinforcement and verify placement		X
b.	Inspect anchors cast in concrete		X
c.	Inspect anchors post installed in concrete	X	
d.	Verify use of required design mix		X
e.	Prior to concrete placement, fabricate specimens for strength tests, perform slump and air content tests, and determine the	V	
-	temperature of the concrete	X	
	Inspect concrete for proper application techniques	Х	
g.	Verify in-situ concrete strength prior to removal of forms		X
h.	Inspect formwork for shape, location, and dimensions of the concrete member being formed		х
2.	SOILS VERIFICATION/INSPECTION		
a.	Verify materals below shallow foundations are adequate to achieve the design-bearing capacity		x
b.	Verify excavations are extended to proper depth and have reached proper material		X
c.	Perform classification and testing of compacted fill materials		X
d.	Verify use of proper materials, densities and lift thicknesses during placement and compaction of compacted fill	X	
e.	Prior to placement of compacted fill, observe subgrade and verify that site has been prepared properly		X
3.	STRUCTURAL WOOD		
a.	Verify nailing, bolting, anchoring, and other fastening elements		X
4.	MASONRY		
a.	Prior to construction verify proportions of site prepared mortar		X
b.	Prior to construction verify grade, type, and size of reinforcement, anchor bolts, and connectors		X
c.	Prior to grouting verify grout spacing, and locations of anchors, reinforcement, and connectors		X
d.	During construction verify compliance with the approved submittals		X
e.	During construction verify location of structural members including: anchors, reinforcement, and other connectors		X
f.	Verify preparation of masonry during cold or hot weather		X
g.	Observe preparation of grout specimens, mortar specimen, and/or prisms		X

ALL CONSTRUCTION MUST COMPLY WITH THE PUERTO RICO BUILDING CODE. YOU ARE REQUIRED TO OBTAIN THE NECESSARY BUILDING PERMITS FROM THE DEPARTMENT OF PLANNING AND RESOURCES. SIGNED AND SEALED DRAWINGS FOR PERMIT MUST BE SUBMITTED TO THE DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE.

STRUCTURES LOCATED IN SPECIAL FLOOD HAZARD AREAS SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL AND CERTIFIED TO COMPY WITH ASCE 24-14 FLOOD RESISTANT DESIGN AND CONSTRUCTION.

CONSULTANT: CLIENT:

PROJECT NAME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. ISSUE LOG Description

Date

PROFESSIONAL SEALS:

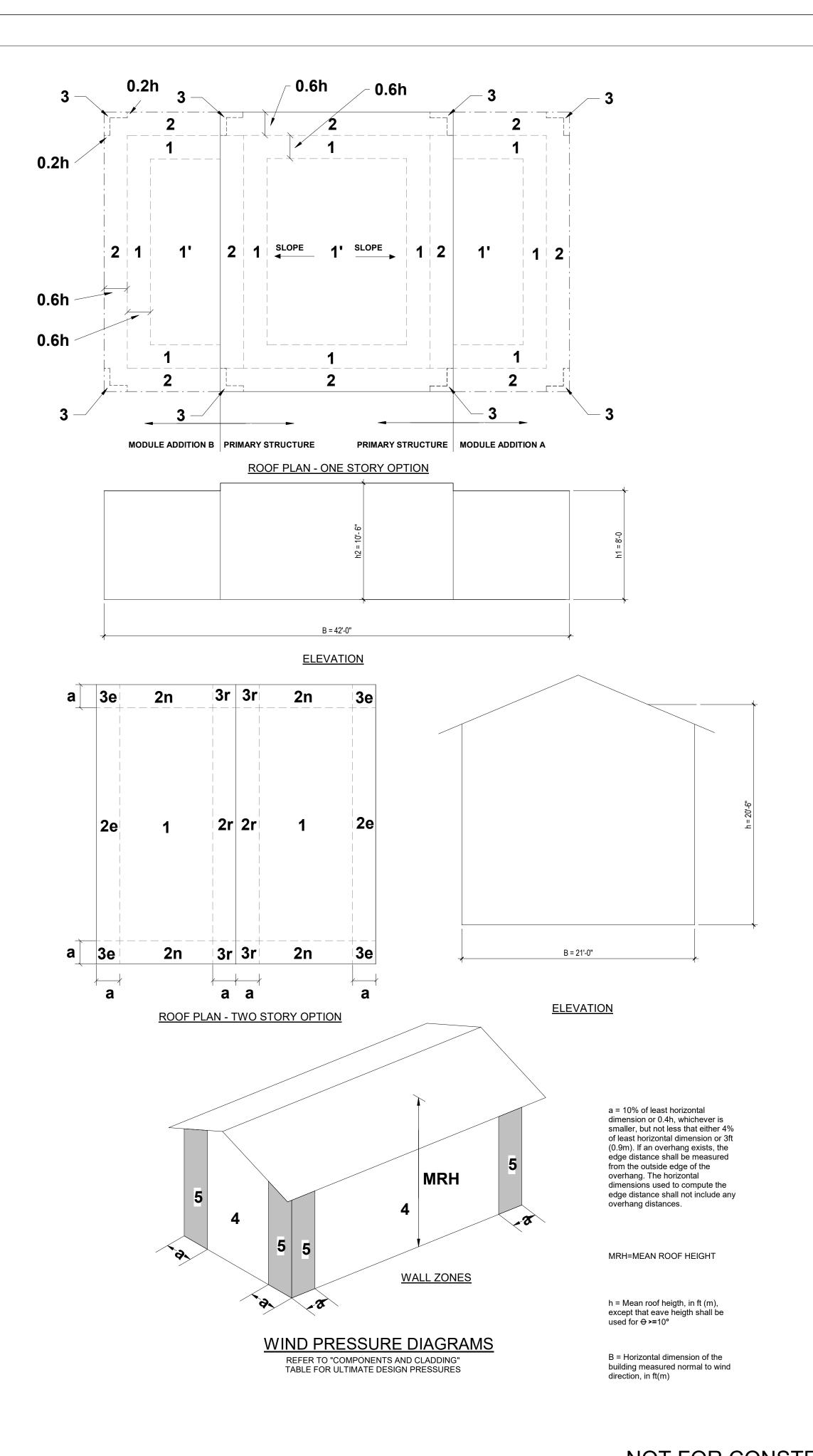
SHEET TITLE:

General Notes

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/202
Drawn By:	Sheet Number:	
Checked By:		
QC Review:	S-0 (JZ6
Phase:		

		ULTIMA	TE DESIGN PRESSURE SCHI	
	E ROOF , ⊕	≤ 7°	EXPOSURE CATEGORY, TOPOGRAPHIC FACTOR	
WALLS	S h ≤ 60 '		EXP	. D, Kzt = 1.0
OMPONENT	ZONE	EFFECTIVE WIND	SURFAC	E PRESSURE (PSF)
		AREA (SF)	POSITIVE	NEGATIVE
		10	38.8	-152.1
	1	50	33.2	-127.8
		100	30.8	-119.7
1'		10	38.8	-87.4
	1'	50	33.2	-87.4
	-	100	30.8	-87.4
ROOF		10	38.8	-200.7
LEMENTS	2	50	33.2	-168.3
	_	100	30.8	-168.3
		10	38.8	-273.5
	3	50	33.2	-247.6
		100	30.8	-213.6
		10	95.5	-103.6
(TEDIOD	4	50	87.4	-95.5
TERIOR WALL		100	79.3	-87.4
EMENTS		10	95.5	-127.8
	5	50	87.4	-110.0
	Ī	100	79.3	-103 6

- DESIGN WIND PRESSURES SHALL BE USED IN THE DESIGN OF ALL COMPONENTS AND CLADDING ELEMENTS COMPRISING THE BUILDING ENVELOPE.
- REFER TO THE WIND PRESSURE DIAGRAM FOR ZONE LOCATIONS AND EXTENTS.
 POSITIVE PRESSURES ACT TOWARD COMPONENT SURFACES AND NEGATIVE PRESSURES ACT AWAY FROM COMPONENT
- LINEAR INTERPOLATION BETWEEN EFFECTIVE WIND AREAS MAY BE USED TO OBTAIN THE REQUIRED COMPONENT AND CLADDING DESIGN PRESSURE.
- OVERHANG SOFFIT PRESSURE EQUALS ADJACENT WALL PRESSURE.


ROOF & WALL DIAGRAM-C & C PRESSURES - ONE STORY OPTION 1 PRESS 8-003 1/16" = 1'-0"

			MPONENTS AND CLADDING EDESIGN PRESSURE SCHED	ULE
GAI	BLE ROOF 7	7° < ⊕ ≤ 20°	EXPOSURE CATEGORY	, TOPOGRAPHIC FACTOR
WA	LLS h ≤ 60 '		EXP. D,	Kzt = 1.0
COMPONENT	ZONE	EFFECTIVE WIND	SURFACE PRESSURE (PSF)	
		AREA (SF)	POSITIVE	NEGATIVE
		10	58.2	-186.7
	1 & 2e	50	48.8	-109.6
		100	41.1	-58.2
	200 200	10	58.2	-272.3
	2n, 2r,	50	48.8	-186.7
	& 3e	100	41.1	-152.4
		10	58.2	-323.7
	3r	50	48.8	-220.9
		100	41.1	-169.5
	Ovh. 1 & 2e	10	N/A	-229.5
ROOF		50	N/A	-202.9
ELEMENTS		100	N/A	-178.1
	Ovh.	10	N/A	-315.1
	2n	50	N/A	-229.5
	211	100	N/A	-186.7
	Ovh.	10	N/A	-366.5
	_	50	N/A	-255.2
	3e	100	N/A	-212.3
	Ovh.	10	N/A	-417.8
		50	N/A	-272.3
	3r	100	N/A	-212.3
		10	101.0	-109.6
EVTED:00	4	50	92.5	-101.0
EXTERIOR WALL		100	83.9	-92.5
ELEMENTS		10	101.0	-135.3
	5	50	92.5	-116.5
		100	83.9	-109.6

- DESIGN WIND PRESSURES SHALL BE USED IN THE DESIGN OF ALL COMPONENTS AND CLADDING ELEMENTS COMPRISING THE
- REFER TO THE WIND PRESSURE DIAGRAM FOR ZONE LOCATIONS AND EXTENTS.
 POSITIVE PRESSURES ACT TOWARD COMPONENT SURFACES AND NEGATIVE PRESSURES ACT AWAY FROM COMPONENT
- LINEAR INTERPOLATION BETWEEN EFFECTIVE WIND AREAS MAY BE USED TO OBTAIN THE REQUIRED COMPONENT AND
- CLADDING DESIGN PRESSURE.

 OVERHANG SOFFIT PRESSURE EQUALS ADJACENT WALL PRESSURE.

ROOF & WALL DIAGRAM-C & C PRESSURES - TWO STORY OPTION

NOT FOR CONSTRUCTION

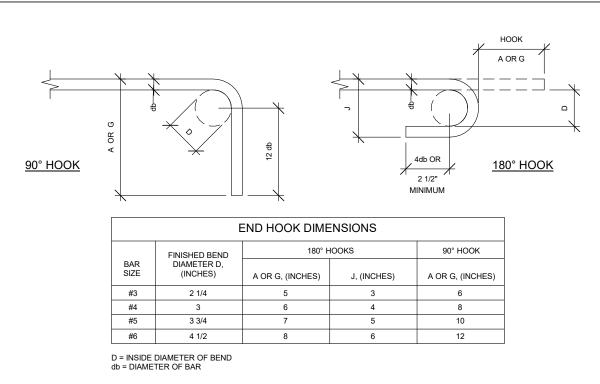
Drawn By:

Checked By:

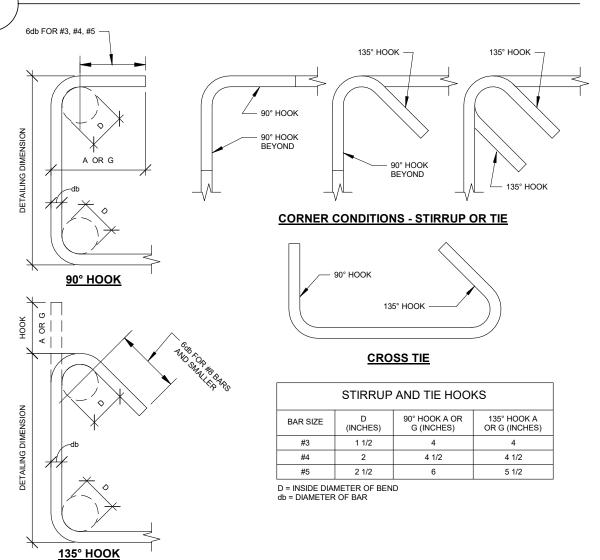
QC Review:

Phase:

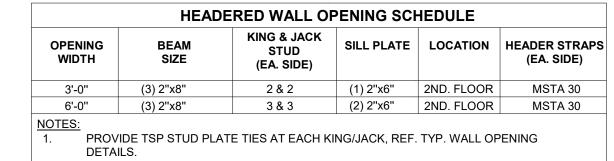
Sheet Number:


S-003

CONSULTANT:		
CLIENT:		
PROJECT NAME:		
ORY 2ND		
STC AND	W00	MO MO H
 ≥ 		
NOTE: PRIOR TO CONSTRUDEPARTMENT OF ECONOM (DDEC), PERMITS MANAGE BUILDING REQUIREMENTS INFORMATION HAS BEEN DEPURTO RICO RESIDENTS RICO BUILDING CODE. ALL APPROVED BY DDEC, PERMUPON SUBMISSION OF A BUILDING CODE.	ICTION CONTACT PUER IIC DEVELOPMENT AND MENT OFFICE (OGPe-D IN PUERTO RICO. THIS DEVELOPED FOR THE US AND IS BELIEVED TO MI DRAWINGS MUST BE S MITS MANAGEMENT OFF	TO RICO COMMERCE DEC) FOR SE OF EET THE PUERTO SEPARATELY FICE
NOTE: PRIOR TO CONSTRU DEPARTMENT OF ECONOM (DDEC), PERMITS MANAGE BUILDING REQUIREMENTS INFORMATION HAS BEEN I PUERTO RICO RESIDENTS RICO BUILDING CODE. ALL APPROVED BY DDEC, PERM UPON SUBMISSION OF A B	ICTION CONTACT PUER IIC DEVELOPMENT AND MENT OFFICE (OGPe-D IN PUERTO RICO. THIS DEVELOPED FOR THE US AND IS BELIEVED TO MI DRAWINGS MUST BE S MITS MANAGEMENT OFF	TO RICO COMMERCE DEC) FOR SE OF EET THE PUERTO SEPARATELY FICE
NOTE: PRIOR TO CONSTRU DEPARTMENT OF ECONOM (DDEC), PERMITS MANAGE BUILDING REQUIREMENTS INFORMATION HAS BEEN I PUERTO RICO RESIDENTS RICO BUILDING CODE. ALL APPROVED BY DDEC, PERM UPON SUBMISSION OF A B ISSUE LOG No. Date	ICTION CONTACT PUER IIC DEVELOPMENT AND MENT OFFICE (OGPe-D IN PUERTO RICO. THIS DEVELOPED FOR THE US AND IS BELIEVED TO MI DRAWINGS MUST BE S MITS MANAGEMENT OFF UILDING PERMIT APPLI	TO RICO COMMERCE DEC) FOR SE OF EET THE PUERTO SEPARATELY FICE


	WOOD FASTENING SCHEDULE				
ITEM	DESCRIPTION OF BUILDING ELEMENTS	NUMBER AND TYPE OF FASTENER	SPACING AND LOCATION		
		Roof			
1	Rafter or roof truss to top plate	Use Connector See Plans	See Plans		
2	Blocking to top plate	A34 Connector with 8 #9 x 1 1/2" SD Screws	6" o.c.		
		Wall			
3	Built-up header ((3) 2x header with (2) 1/2" spacers)	16d common (3 1/2" x 0.162")	16" o.c each edge, face nail, both sides		
J	Built-up fleader ((3) 2x fleader with (2) 1/2 spacers)	16d box (3 1/2" x 0.135")	12" o.c each edge, face nail, both sides		
4	Top plate to top plate	10d box (3" x 0.128")	6" o.c face nail		
5	Double top plate splice	See Plans	See Plans		
6	Top plate or bottom plate to stud	Use Connector See Plans	See Plans		
7	Top plate, laps at corners	3-10d box (3" x 0.128"); or 2-16d common (3 1/2" x 0.162")	Face nail		
8	King Stud to King Stud at Openings	See Plans	See Plans		
9	Blocking to Stud	6-10d box (3" x 0.128")	Toe Nail (3) Ea. End		
10	Sill Plate to Sill Plate	10d box (3" x 0.128")	6" o.c. face nail		

NOTE: THIS FASTENING SCHEDULE SHALL APPLY TO ALL MEMBERS UNLESS SPECIFIED IN PLANS. WHERE PLANS CALL OUT MORE STRINGENT REQUIREMENTS FOLLOW PLANS.


WOOD FASTENING SCHEDULE

TYPICAL END HOOK TYPES

TYPICAL STIRRUP AND TIE HOOK TYPES

PROVIDE MSTA 30 STRAPS EACH SIDE OF BEARING HEADERED OPENINGS, REF. TYPICAL WALL OPENING DETAILS.

HEADERED WALL OPENING SCHEDULE

LAP SPLICE SCHEDULE CONCRETE				
	f'c = 3000 ps	si		
BAR SIZE	TENSION	COMPRESSION		
3	21	8		
4	28	11		
5	36	14		
6	43	16		
7	62	19		
8	71	22		
9	80	25		
NOTES:				
	LAP LENGTHS ARE IN INC ON GRADE 60 REINFORC NORMAL WEIGHT CONCF	ING STEEL AND		

	f'M = 1900 psi		
BAR SIZE	TENSION	COMPRESSION	
3	27	27	
4	36	36	
5	45	45	
6	54	54	
7	63	63	
8	72	72	
9	82	82	
NOTES:			

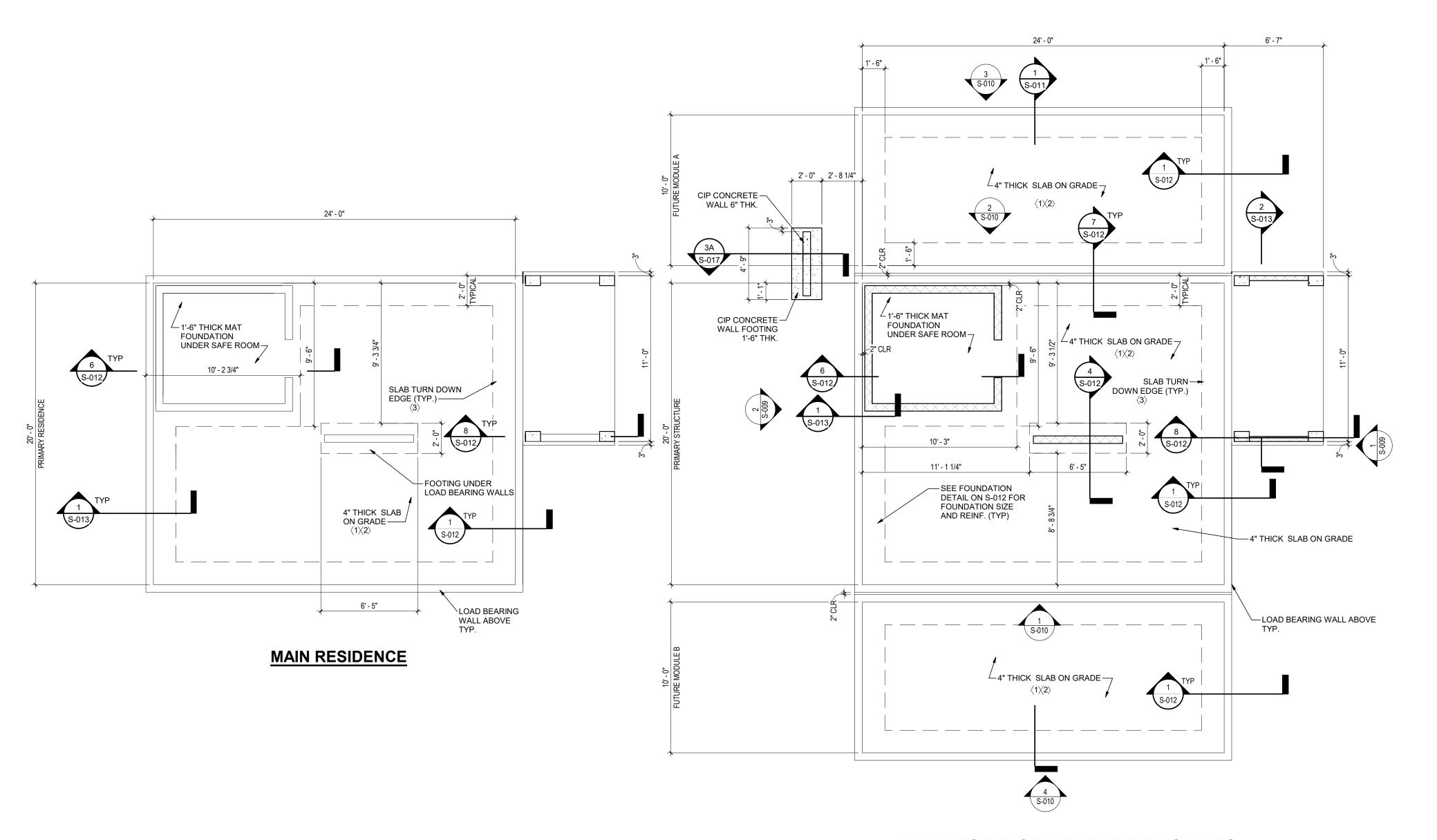
LAP SPLICE SCHEDULE CONCRETE 6 LAP SPLICE SCHEDULE MASONRY

STRUCTURAL SHEATHING SCHEDULE					
ELEMENT	SHEATHING	FASTENER	SPAN RATING	PANEL	FASTENING
LLLIVILINI	SHEATHING	FASTENER	SPAN KATING	EDGE	INTERIOR
EXTERIOR WALL	23/32" STRUCT. 1 PANELS	#12 SCREW W/ 3" LENGTH	48/24	3" C/C	6" C/C
ROOF	23/32" STRUCT. 1 PANELS	#12 SCREW W/ 3" LENGTH	48/24	3" C/C	6" C/C
PANE SHEA	L EDGES PERPE THING PERPEND	NDICULAR TO T DICULAR TO FRA	CONTINUOUS BLOCKIN HE FRAMING MEMBERS MING MEMBERS. PROV SHEATHING AT SHEAT	S. APPLY /IDE DOL	JBLE
	RE FASTENER AT I PANEL EDGE TO		OCKING PROVIDE 3/4" E OF FASTENER.	DGE DIS	TANCE

STRUCTURAL SHEATHING SCHEDULE

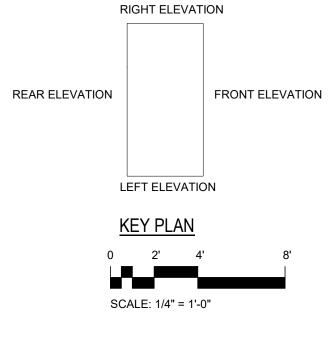
WALL STUD SCHEDULE				
EXTERIOR LOAD BEARING				
STUD SIZE	SPECIES/GRADE	UNBRACED HGT.	LOCATION	SPACING
2"x6"	S-Y-P No.2	8'-0"	2nd FLOOR	12" C/C
INTERIOR NON-LOAD BEARING				
2"x4"	S-Y-P No.2	8'-0"	2nd FLOOR	16" C/C
NOTES:				
2. PRO	E TYPICAL DETAILS F DVIDE ATTACHMENT NC. SLAB AND WOOI DTTED CONNECTION	OF INTERIOR NON DEN ROOF TRUSSE	I LOAD BEARING W	

CONSULTANT:


tion	

Schedules and Hook Types

SHEET TITLE:


SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:	C 0	04
QC Review:	S-0	U 4
Phase:		
-		

NOT FOR CONSTRUCTION

MAIN RESIDENCE WITH FUTURE MODULES

1 FOUNDATION PLANS

ORIGINAL SHEET SIZE - 24 x 36 OTHERWISE SCALES ARE INACCURATE

NOT FOR CONSTRUCTION Phase:

STRUCTURAL NOTES:

1. MAIN RESIDENCE (PRIMARY STRUCTURE)
TO BE BUILT PRIOR OR SIMULTANEOUSLY
WITH BUILDING MODULES. MODULES SHALL
NOT BE CONSTRUCTED WITHOUT
CONSTRUCTING THE PRIMARY STRUCTURE.

2. SEE SECTIONS FOR CONCRETE STEEL REINFORCING.

3. COORDINATE DOOR/WINDOW OPENINGS WITH ARCH. DWGS.

4. COORDINATE WITH OTHER DISCIPLINES AND TRADES FOR LOCATIONS AND DIMENSIONS OF OPENINGS, RECESSES, SLEEVES, AND PIPING.

5. DIMENSIONS INDICATED ARE FROM FACE OF UNFINISHED WALL, UNLESS NOTED OTHERWISE.

DRAWING KEY NOTES:

①SLAB ON GRADE SHALL BE A MINIMUM 4"
THICK CONCRETE WITH 4" x 4" W8 x W8 WWF

②TOP OF SLAB ELEVATION IS AT 0'-0" (DATUM ELEVATION). ALL OTHER ELEVATIONS ARE REFERENCED AS + OR - FROM DATUM.

③BOTTOM OF FDN = 1'-6" BELOW FINISHED FLOOR ASSUMING A FLAT SITE WITH LEVEL GROUND ON ALL SIDES OF STRUCTURE.

ALL JRE.

CONSULTANT:

CLIENT:

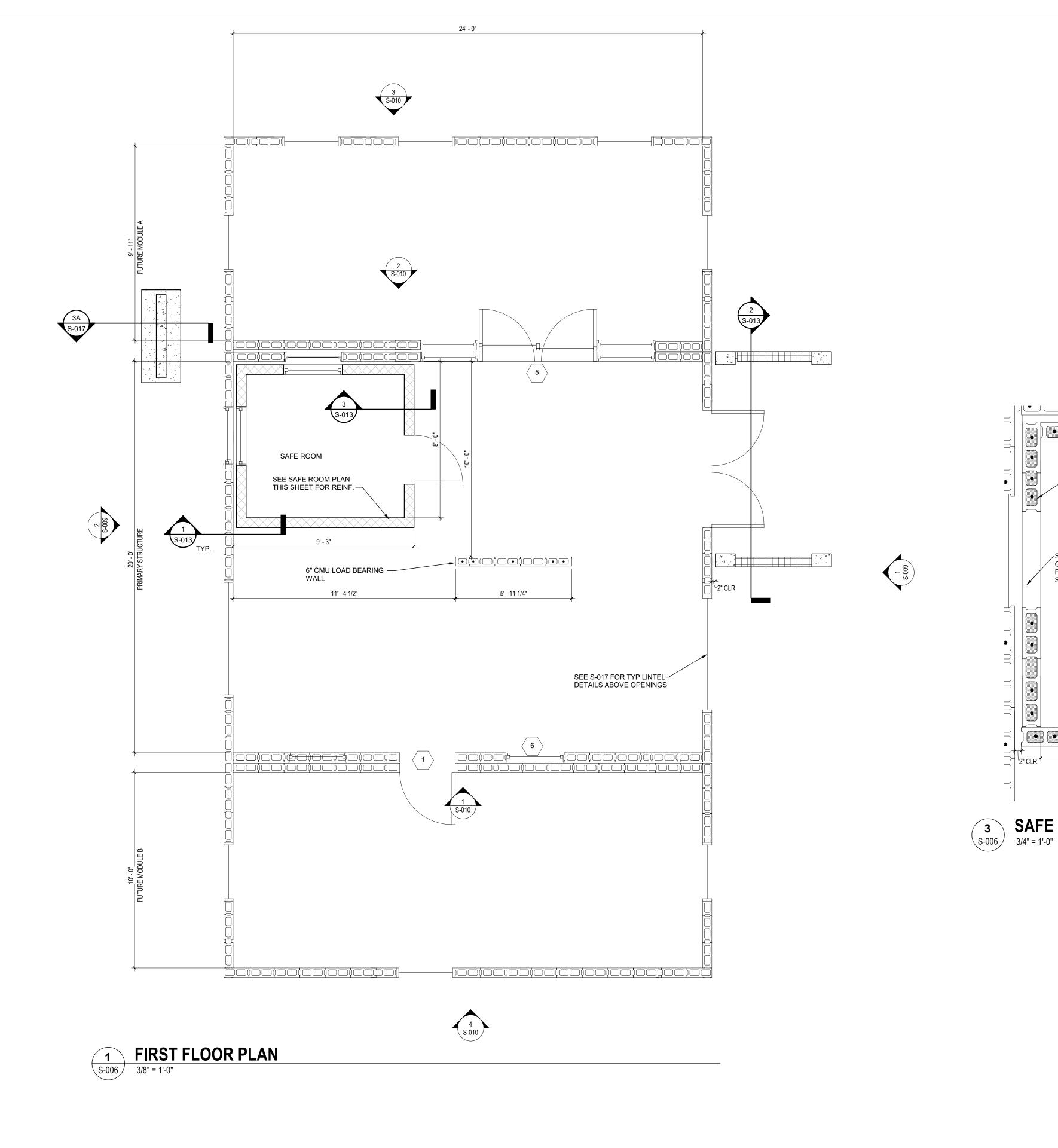
NG A FLAT SITE WITH LEVEL L SIDES OF STRUCTURE.

PROJECT NAME:

TWO STORY CMU AND 2ND FL. WOOD HOME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG


lo. Date Description

PROFESSIONAL SEALS:

SHEET TITLE:

Foundation Plans

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:		
QC Review:	S-0	105
Dhasa		

STRUCTURAL NOTES

FOR FLOOR JOINT DETAIL.

1. MAIN RESIDENCE FOUNDATION AND STRUCTURE TO BE BUILT PRIOR OR SIMULTANEOUSLY TO BUILDING MODULES.

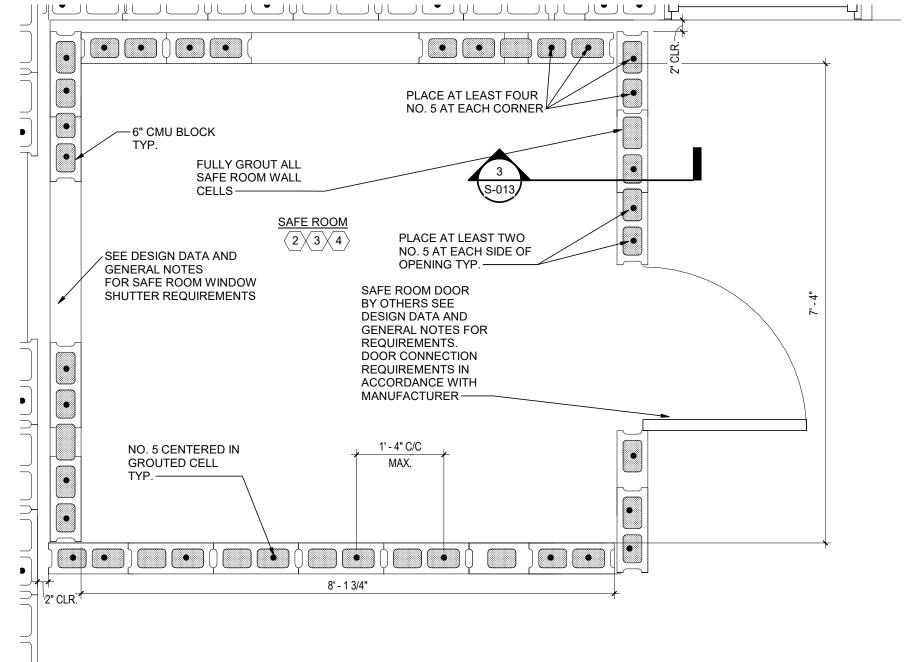
2. SEE SECTIONS FOR MASONRY AND CONCRETE STEEL REINFORCING. 3. MODULES ARE NOT ATTACHED TO PRIMARY STRUCTURE. SEE S-009

4. COORDINATE DOOR AND WINDOW OPENING LOCATIONS WITH ARCH. DWGS.

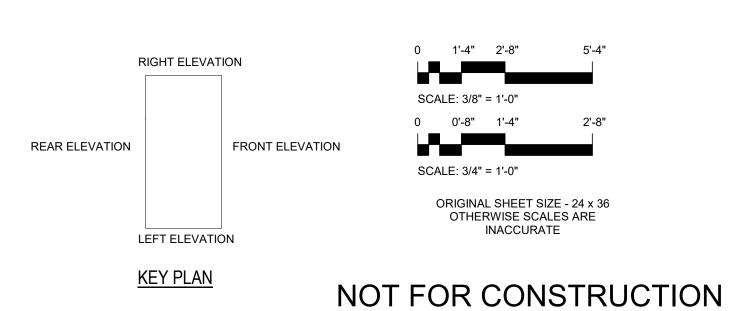
5. ALL MASONRY CELLS WITH REBAR SHALL BE FULLY GROUTED. SEE S-013 FOR TYPICAL PRIMARY STRUCTURE AND MODULE WALL REINFORCING. SEE ELEVATIONS FOR ADDITIONAL SHEAR WALL REINFORCING.

DRAWING KEY NOTES

5 SEE TYPICAL FLOOR JOINT DETAIL ON S-012.


1 PROVIDE DOOR AT THIS LOCATION ONLY WHEN BUILDING MODULE. SEE TYPICAL FLOOR JOINT DETAIL ON S-012.

②PROVIDE 2" CLR BETWEEN SAFE ROOM WALLS AND ANY ADJACENT WALLS.


③PROVIDE DOOR AND WINDOW SHUTTERS MEETING SAFE ROOM REQUIREMENTS. SEE STRUCTURAL GENERAL NOTES.

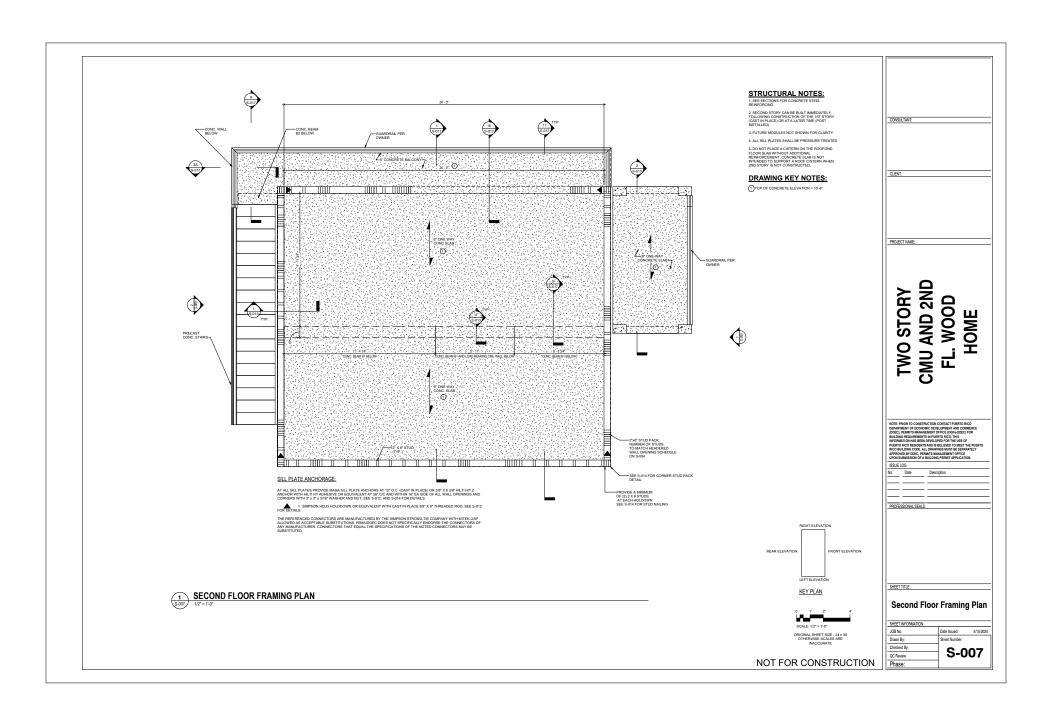
⟨4⟩SEE "TYPICAL LINTEL DETAIL" ON S-017 FOR LINTEL ABOVE DOORS AND WINDOWS.

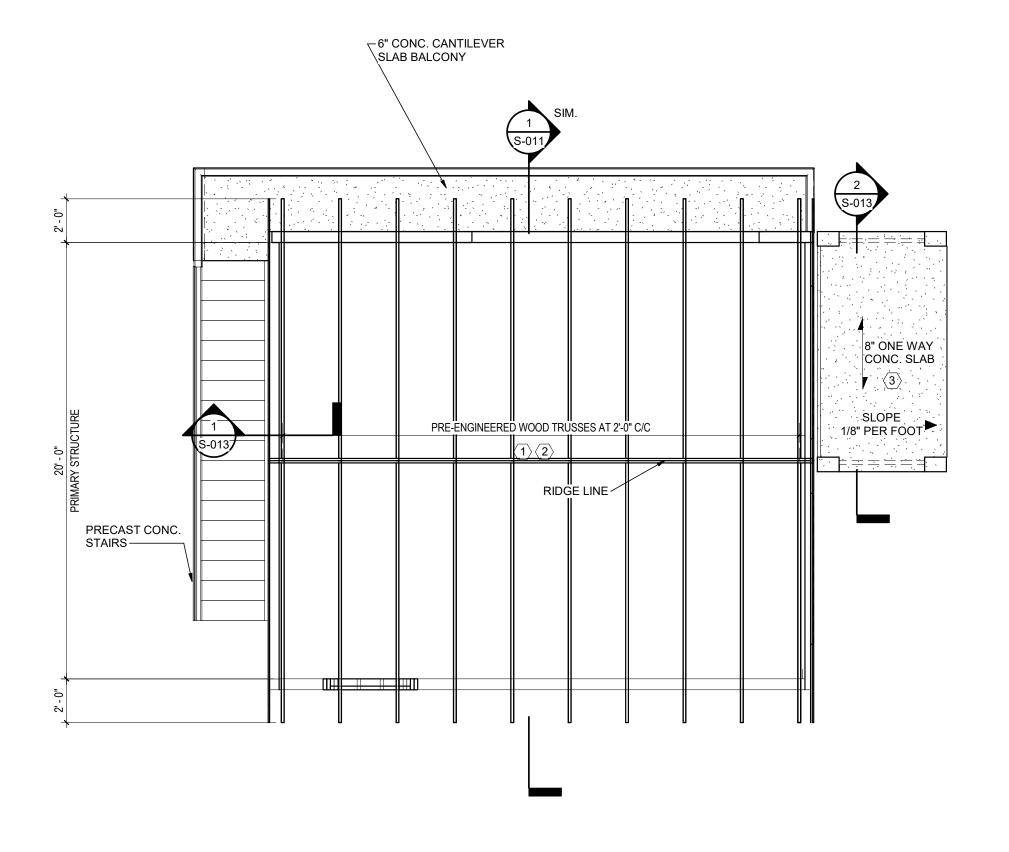
6 WINDOW NOT REQUIRED IF MODULE IS CONSTRUCTED AT THE SAME TIME AS PRIMARY

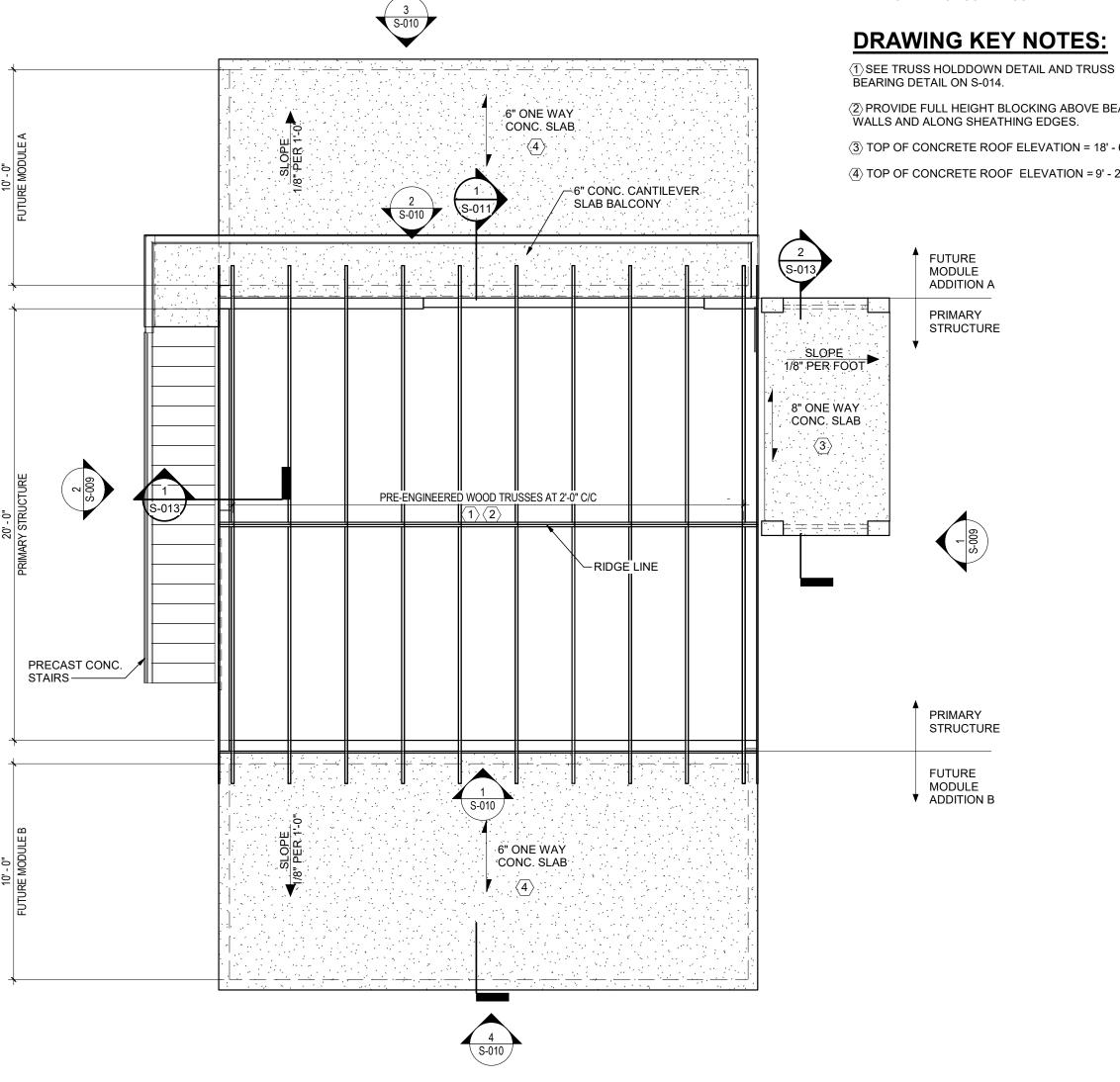
SAFE ROOM PLAN

CONSULTANT:

PROJECT NAME

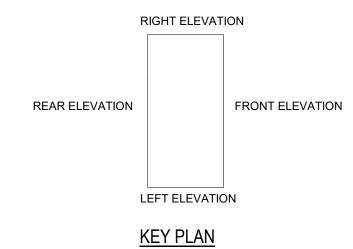

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

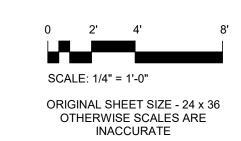

PROFESSIONAL SEALS:


SHEET TITLE:

First Floor Plan

	SHEET INFORMATION:		
	JOB No.	Date Issued:	5/15/2020
	Drawn By:	Sheet Number:	
	Checked By:		06
_	QC Review:	S-0	OU
]	Phase:		





MAIN RESIDENCE

ROOF FRAMING PLANS

MAIN RESIDENCE WITH FUTURE MODULES

NOT FOR CONSTRUCTION Phase:

STRUCTURAL NOTES:

1. SECOND STORY CAN BE BUILT IMMEDIATELY FOLLOWING CONSTRUCTION OF THE 1ST STORY (CAST IN PLACE) OR AT A LATER TIME (POST INSTALLED).

2. SEE S-015 FOR TYPICAL GABLE END BRACING DETAIL AND FOR CONTINOUS LATERAL RESTRAINT FOR TRUSSES.

3.DO NOT PLACE A CISTERN ON THE ROOF/2ND FLOOR SLAB WITHOUT ADDITIONAL REINFORCEMENT. CONCRETE SLAB IS NOT INTENDED TO SUPPORT A ROOF CISTERN WHEN 2ND STORY IS NOT CONSTRUCTED.

 $\langle \overline{2} \rangle$ PROVIDE FULL HEIGHT BLOCKING ABOVE BEARING WALLS AND ALONG SHEATHING EDGES.

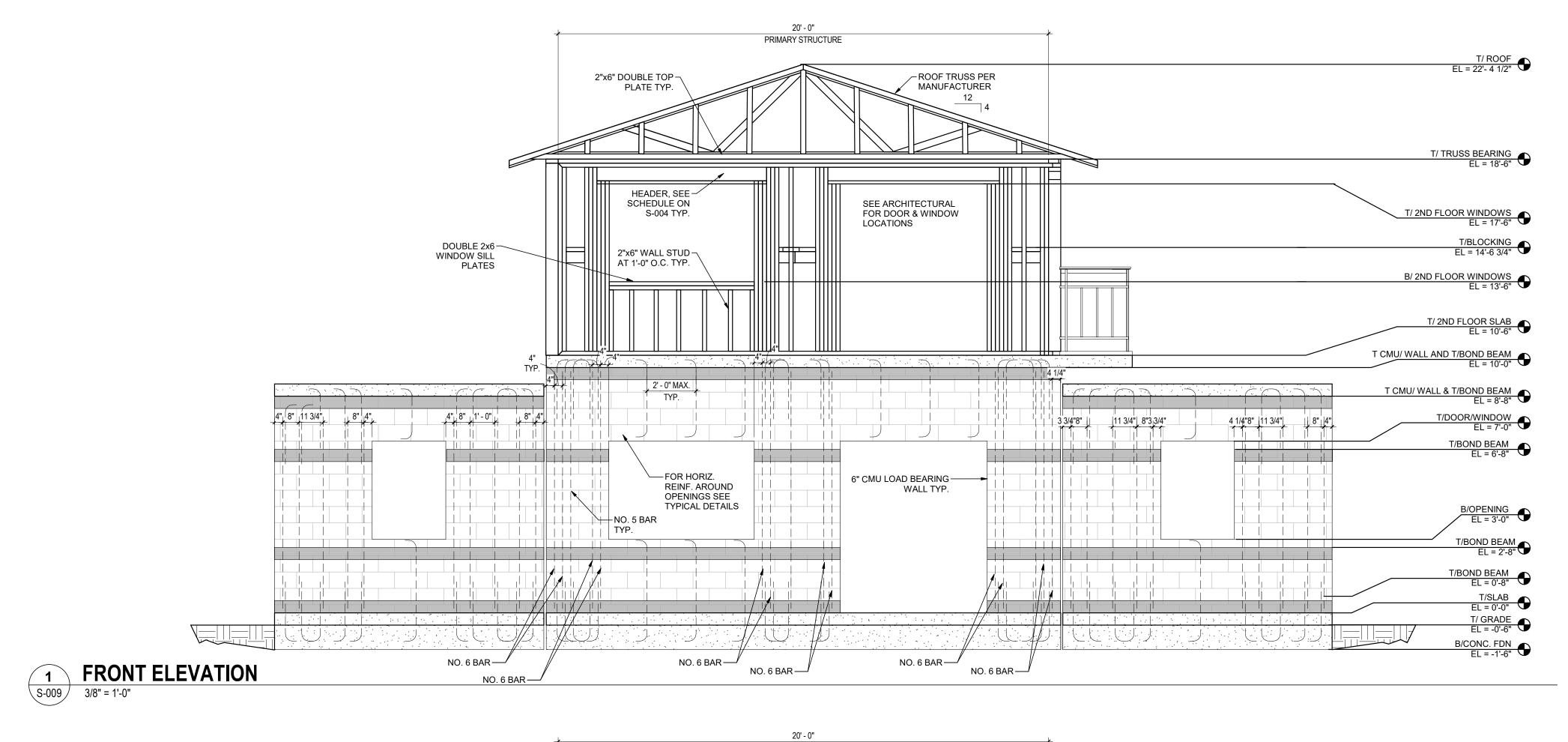
 $\overline{3}$ TOP OF CONCRETE ROOF ELEVATION = 18' - 6"

4 TOP OF CONCRETE ROOF ELEVATION = 9' - 2"

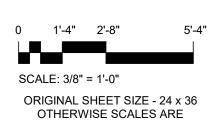
PROJECT NAME:

CONSULTANT:

CLIENT:


NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

PROFESSIONAL SEALS:


SHEET TITLE:

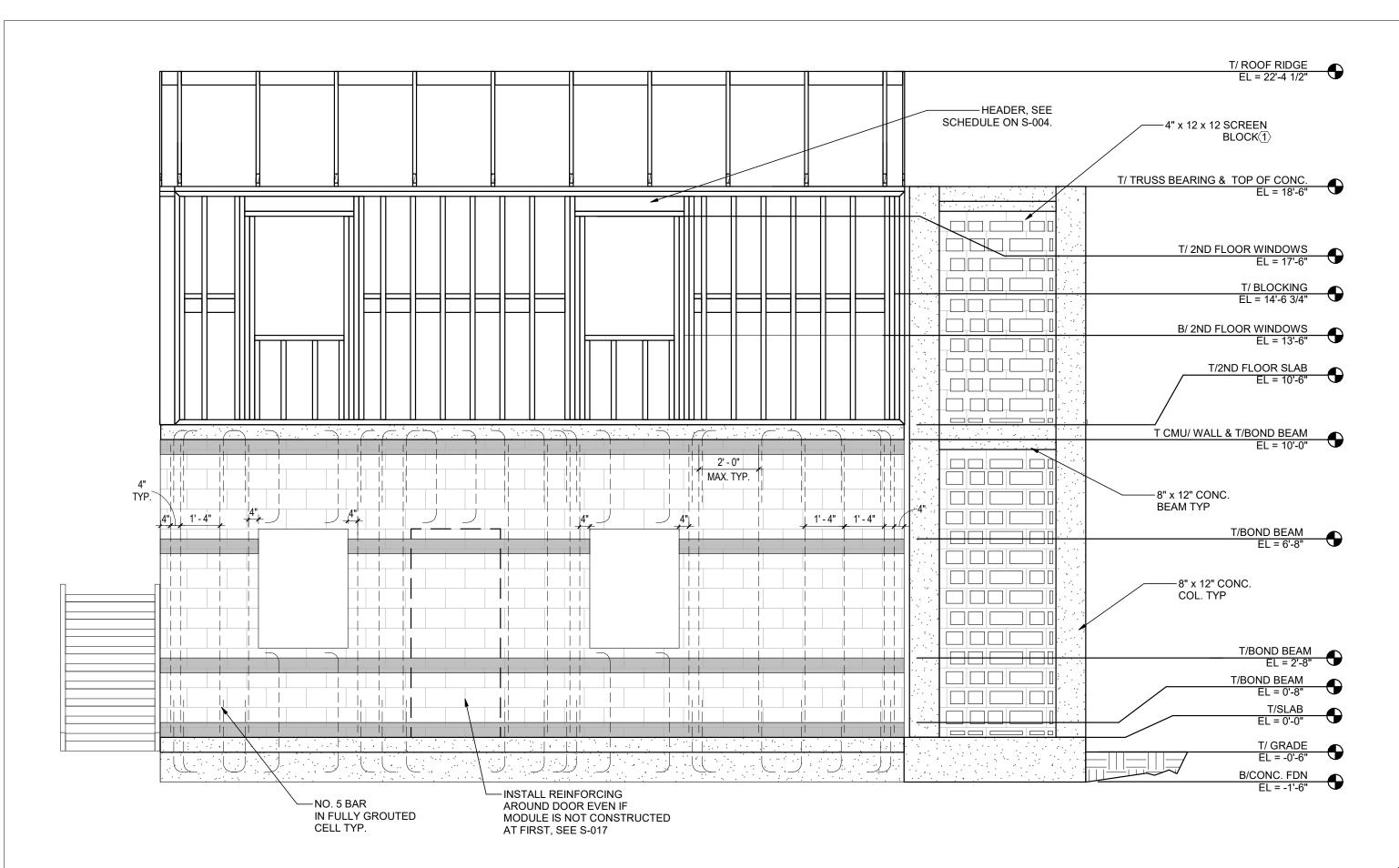
Roof Framing Plans

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:	C 0	00
QC Review:	S-0	JUB
Dlagge		

ORIGINAL SHEET SIZE - 24 x 36 OTHERWISE SCALES ARE INACCURATE

REAR ELEVATION S-009

NOT FOR CONSTRUCTION Phase:

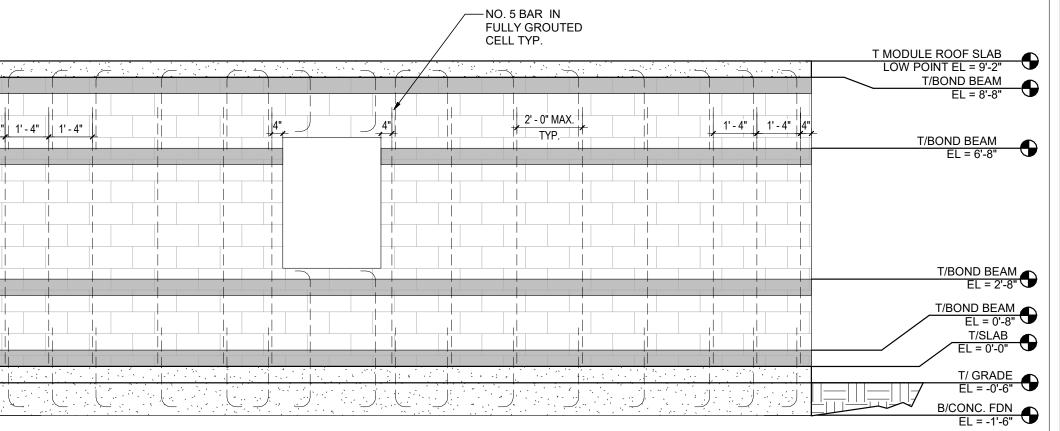

CONSULTANT: CLIENT: PROJECT NAME NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. ISSUE LOG Description

PROFESSIONAL SEALS:

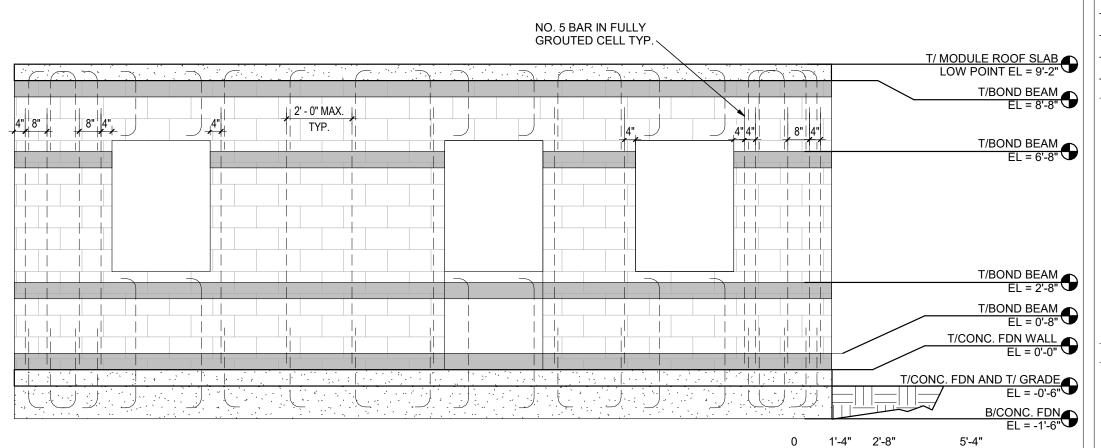
SHEET TITLE:

Primary Structure Elevations

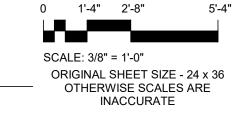
SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:	C 0	000
QC Review:	S-C	109
Dhaco:		



LEFT ELEVATION PRIMARY RESIDENCE \S-010 \/ 3/8" = 1'-0" SEE TYPICAL DETAILS FOR TRUSS — CONNECTORS T/ ROOF RIDGE EL = 22'-4 1/2" 5 1/4"x12" 2650Fb -1.9E 3-PLY LVL BEAM SEE SHEET S-015 FOR PLY CONNECTION 2' - 5 3/4" 4" x 12 x 12 SCREEN \ BLOCK 1) T/ TRUSS BEARING EL = 18'-6" - HGA10KT FRAMING ANGLE TYP. EACH END OF DOOR HEADER T/ BLOCKING EL = 14'-6 3/4" CMST14 STRAP WITH 10D NAILS -—8" x 12" CONC. UNDER SHEATHING TYP. BEAM TYP MSTA 30 STRAP AT EACH -END TYP CS16 STUD TIE TYP. EACH END T/ 2ND FLOOR SLAB EL = 10'-6" T/ CMU WALL & T/BOND BEAM EL = 10'-0" 1' - 0" 4" T/BOND BEAM EL = 6'-8" —SEE SECTION 10 ON S-017 FOR LINTEL IN FULLY GROUTED 6" THK. LOADBEARING — CELL TYP. CMU WALL (TYP.) T/BOND BEAM EL = 2'-8" T/BOND BEAM EL = 0'-8" — 8" x 12" CONC. T/CONC. FDN WALL & CONC FDN EL = 0'-0" T/ GRADE EL = -0'-6" B/CONC. FDN EL = -1'-6"


RIGHT ELEVATION PRIMARY RESIDENCE S-010 3/8" = 1'-0"

DRAWING KEY NOTES


(1 SCREEN BLOCK TO HAVE MINIMUM 30% OPEN AREA AND MINIMUM 2000 PSI NET AREA COMPRESSIVE STRENGTH. PROVIDE 9 GA. TRUSS TYPE JOINT REINFORCEMENT AT EVERY COURSE AND EXTEND 4" INTO COLUMN.

EXPANSION MODULE B LEFT ELEVATION S-010

EXPANSION MODULE A RIGHT ELEVATION S-010 3/8" = 1'-0"

NOT FOR CONSTRUCTION

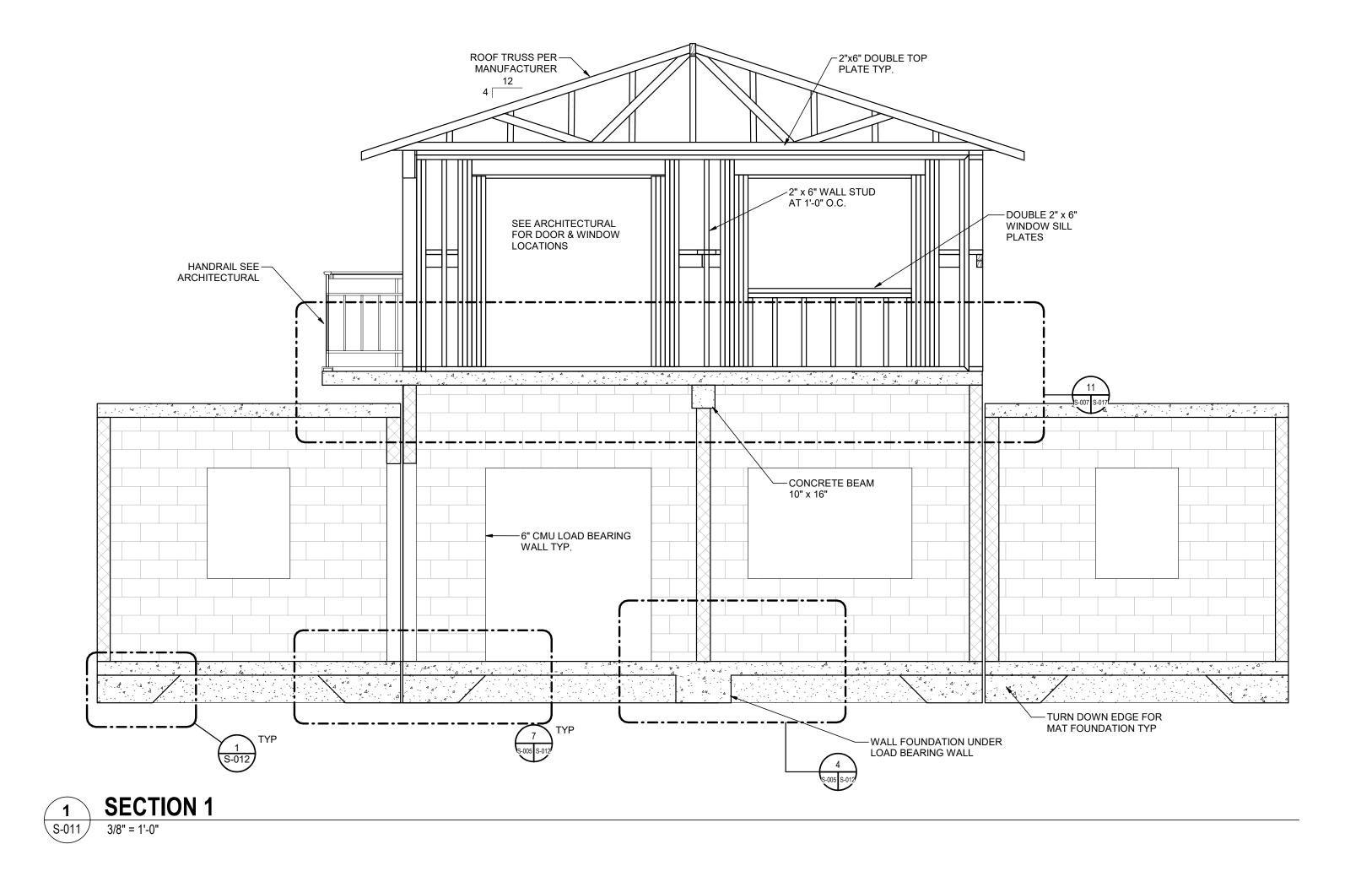
CONSULTANT:

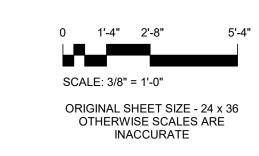
CLIENT:

PROJECT NAME

OME

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.


ISSUE LOG


Description

PROFESSIONAL SEALS:

Primary Structure Elevations

SHEET INFORMATION: JOB No. Date Issued: 5/15/2020 Drawn By: Sheet Number: Checked By: **S-010** QC Review: Phase:

NOT FOR CONSTRUCTION

TWO STORY CMU AND 2ND FL WOOD

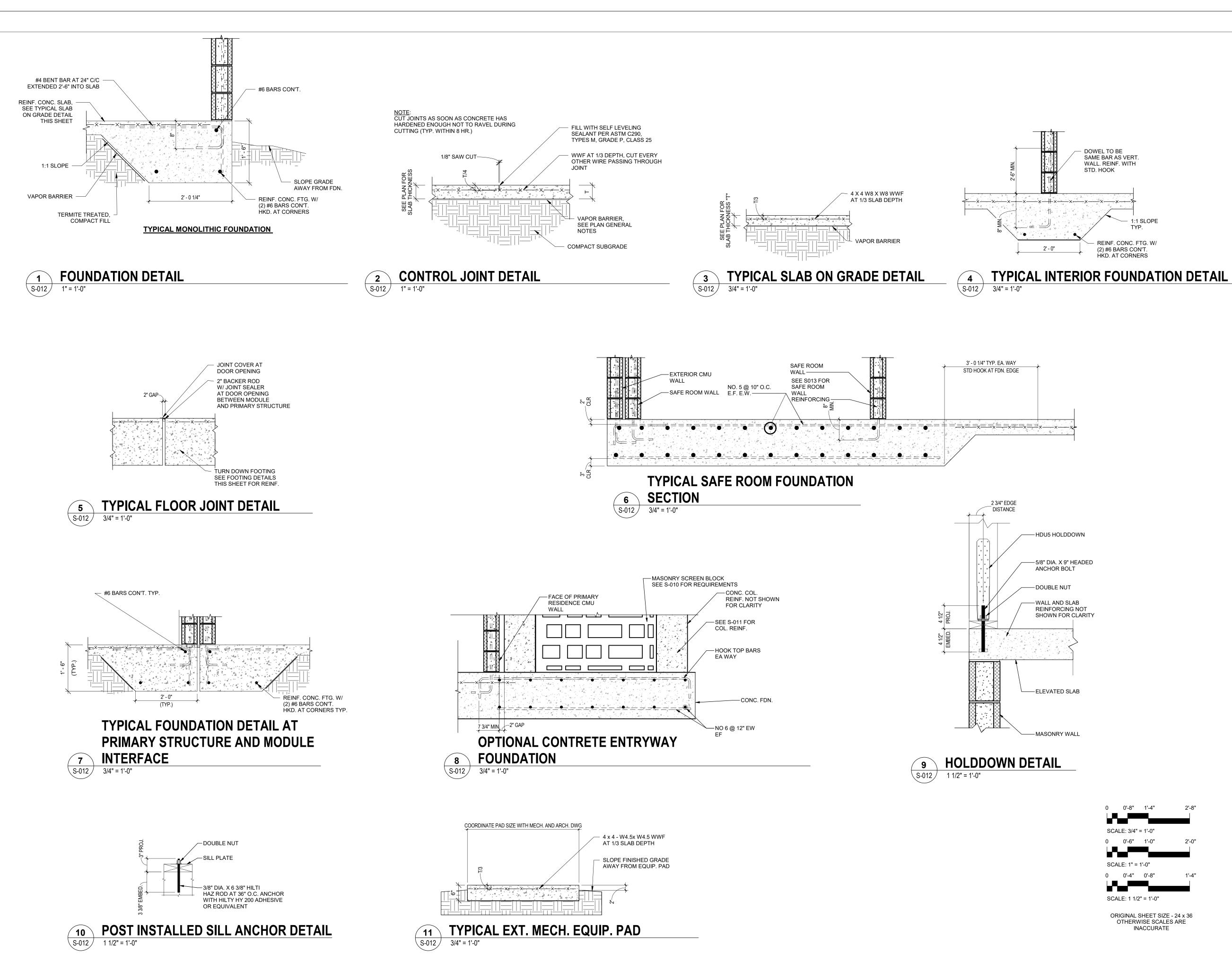
NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS

INFORMATION HAS BEEN DEVELOPED FOR THE USE OF

ISSUE LOG

PROFESSIONAL SEALS:

PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.


CONSULTANT:

CLIENT:

SHEET TITLE:		

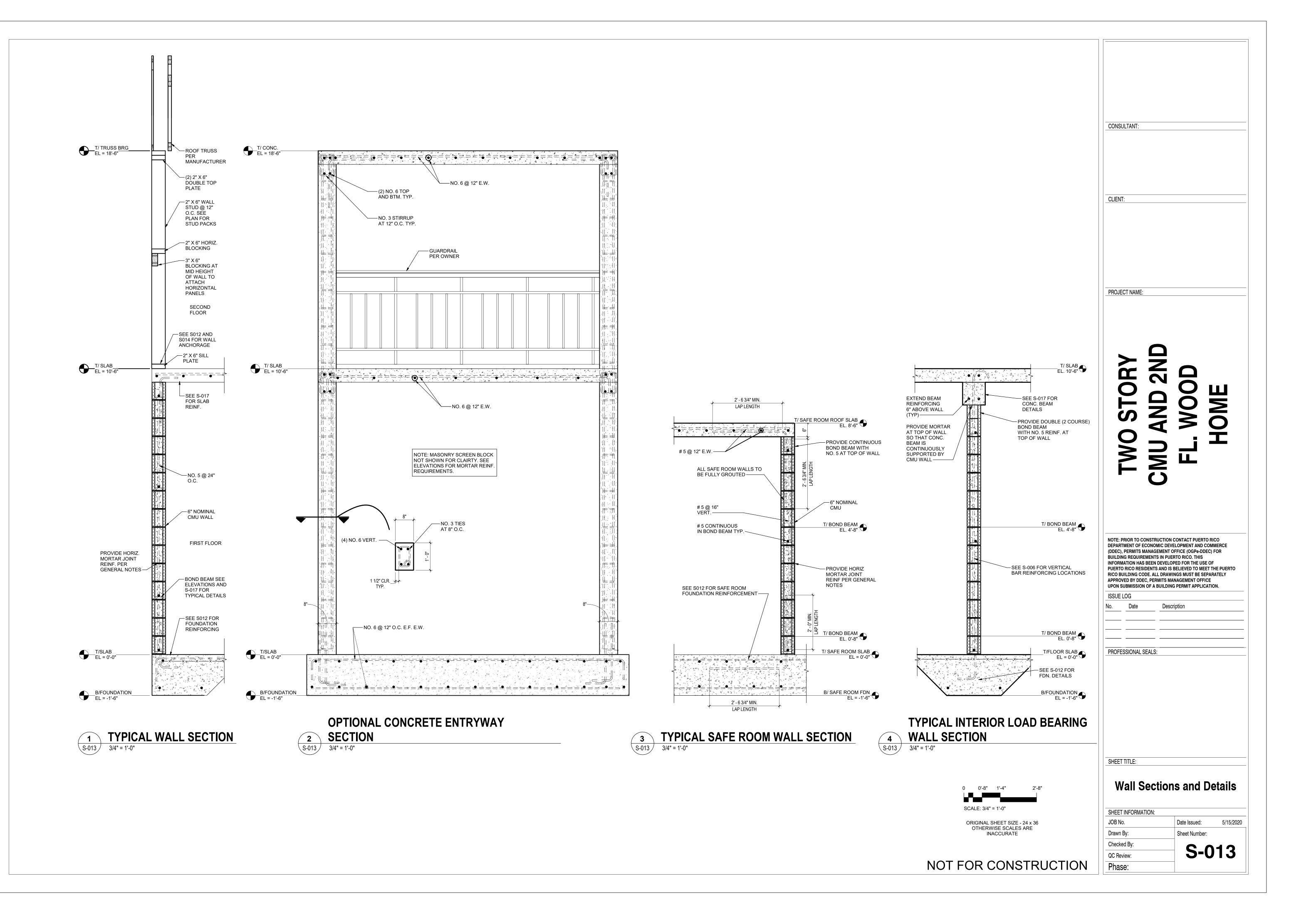
SHEET INFORMATION:	
JOB No.	Date Issued: 5/15/202
Drawn By:	Sheet Number:
Checked By:	$C \cap A = A$
QC Review:	S-011

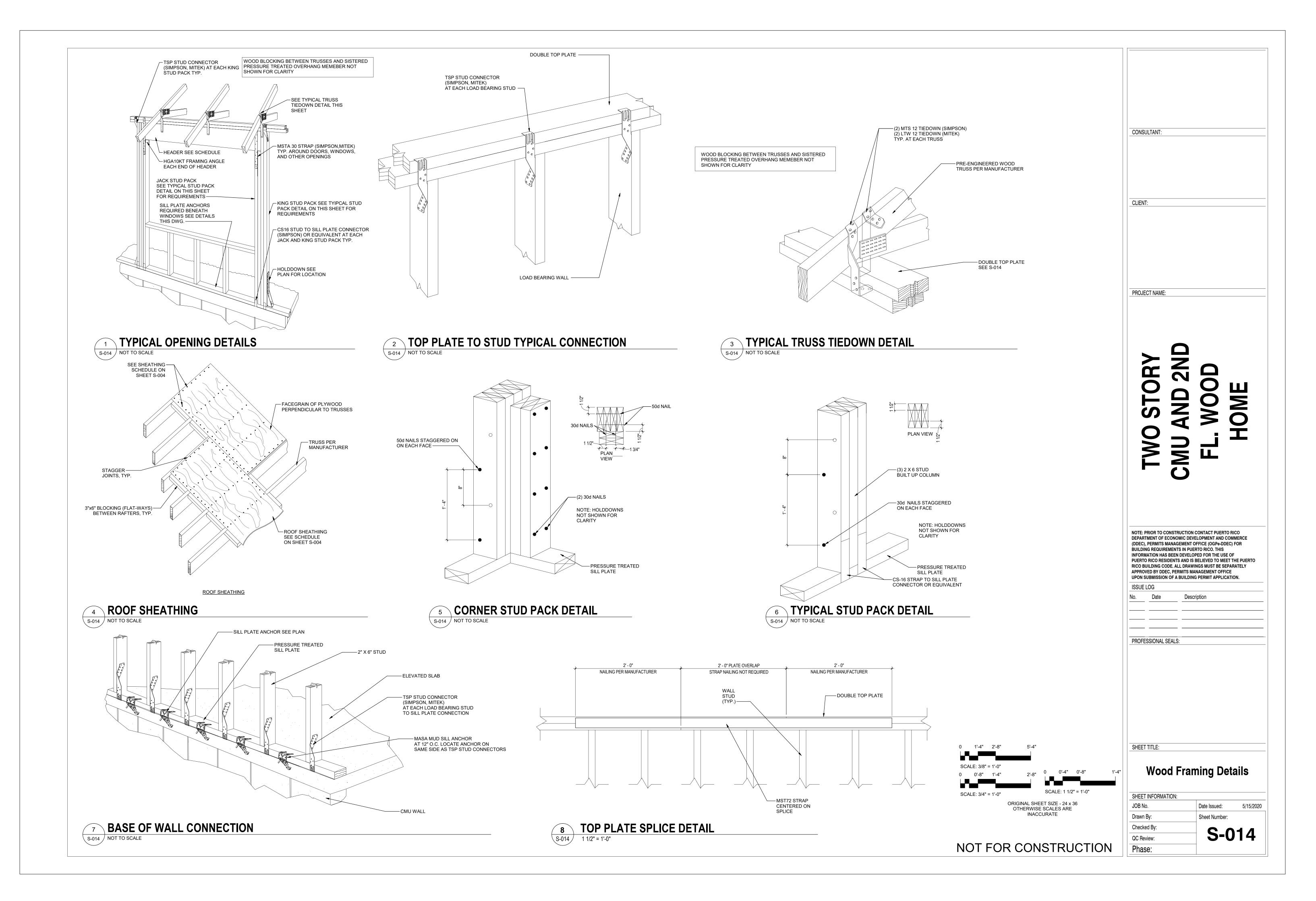
Sections

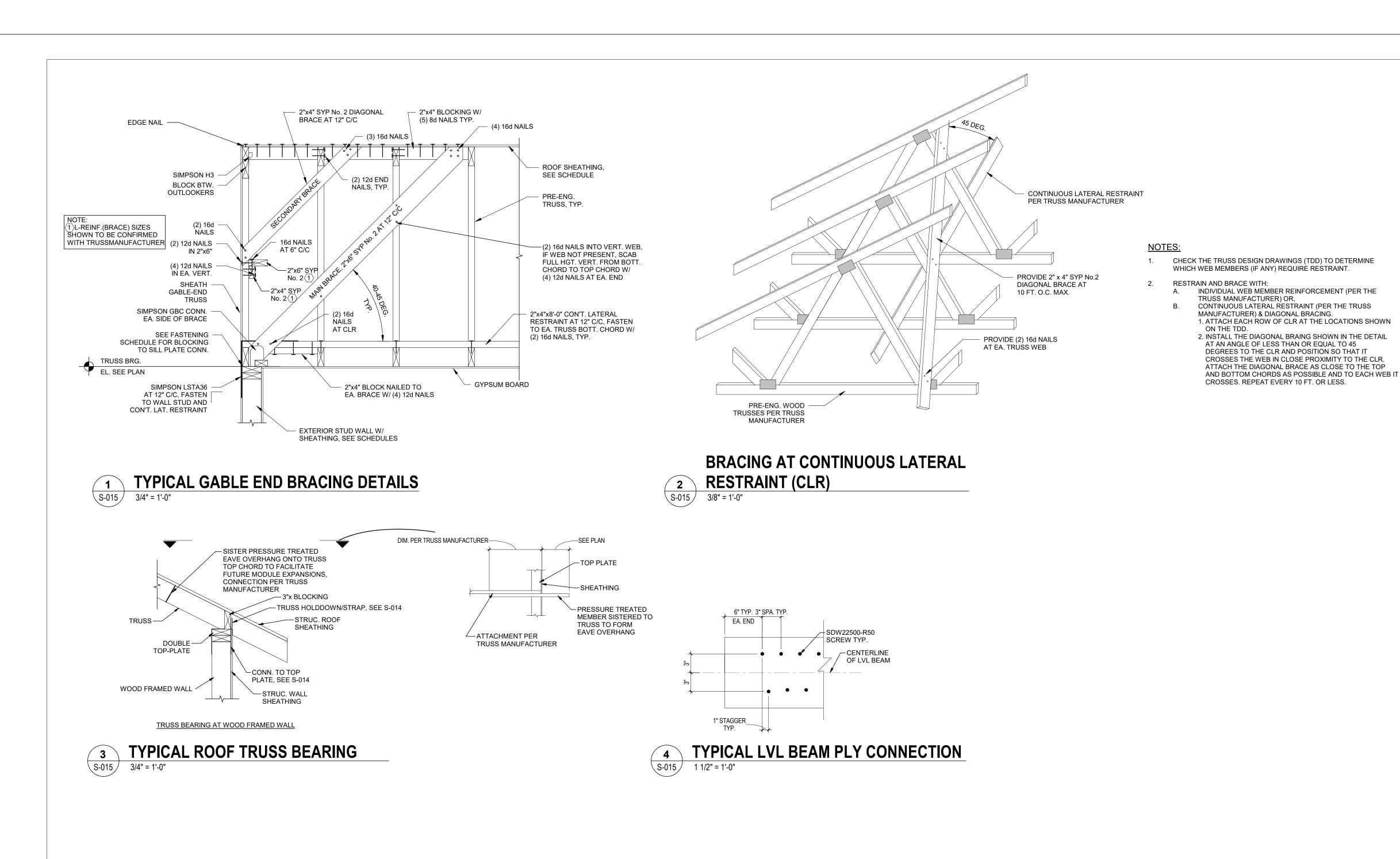
NOT FOR CONSTRUCTION

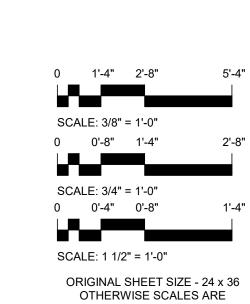
Drawn By:

Checked By


QC Review:


Phase:


Sheet Number:


S-012

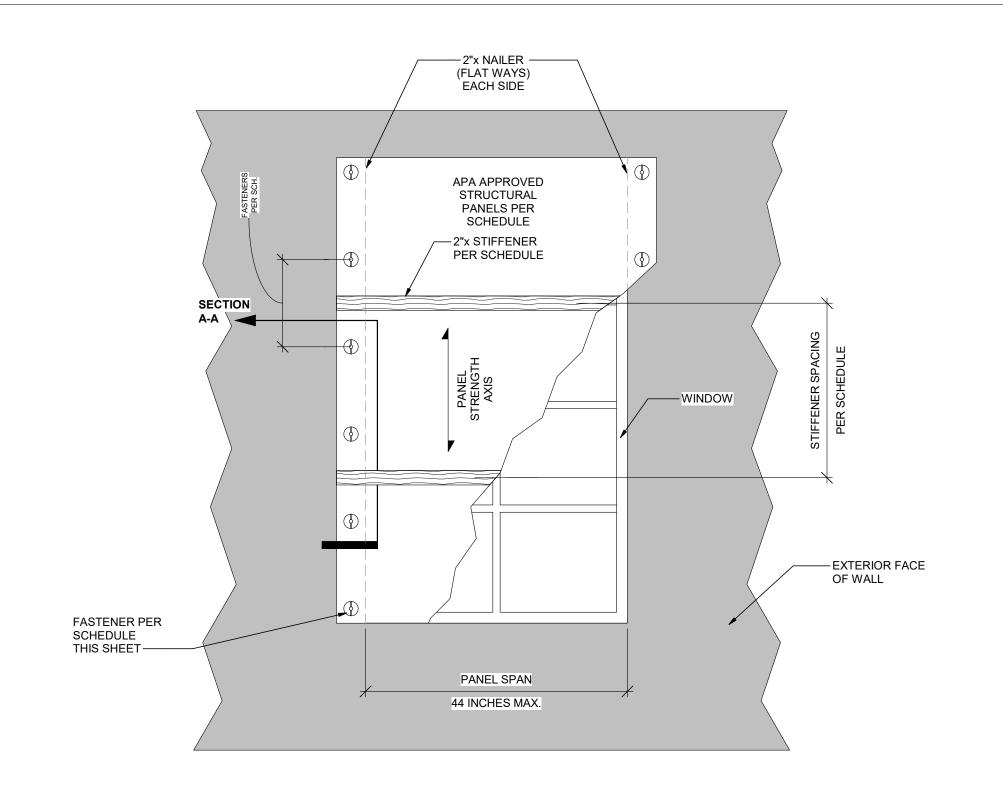
CONSULTANT: CLIENT: PROJECT NAME NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. ISSUE LOG Description PROFESSIONAL SEALS: SHEET TITLE: **Foundation Sections and Details** SHEET INFORMATION: JOB No. 5/15/2020 Date Issued:

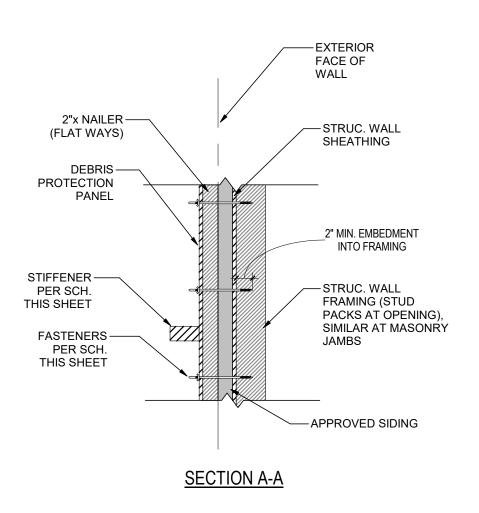
NOT FOR CONSTRUCTION

INACCURATE

CONSULTANT:
CLIENT:
OLIENI.
PROJECT NAME:

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE (DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR **BUILDING REQUIREMENTS IN PUERTO RICO. THIS** INFORMATION HAS BEEN DEVELOPED FOR THE USE OF PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE UPON SUBMISSION OF A BUILDING PERMIT APPLICATION. ISSUE LOG


0.	Date	Description
	COLONIAL OF ALC	_


PROFESSIONAL SEALS:

SHEET TITLE:

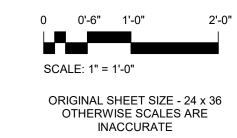
Wood Framing Details

SHEET INFORMATION:		
JOB No.	Date Issued:	5/15/2020
Drawn By:	Sheet Number:	
Checked By:		4
QC Review:	S-0	115
Phase:		

WIND-BORNE DEBRIS PROTECTION FOR GLAZED AND JALOUSIE WINDOW OPENINGS (NOT SUITABLE FOR SAFE ROOM)

NOTES

- THE DETAIL'S INTENDED USE IS TO PROVIDE PROTECTION FROM WIND-BORNE DEBRIS.
 THE PREFERRED METHOD OF PROTECTION IS APPROVED IMPACT RESISTANT GLAZING
 OR APPROVED IMPACT RESISTANT COVERINGS (i.e. SHUTTER SYSTEM).
- 2. THE WOOD PANEL OPTION ONLY APPLIES TO OPENINGS WHICH DO NOT EXCEED 44 INCHES IN WIDTH. OPENINGS GREATER THAN 44 INCHES WIDE SHALL BE PROTECTED BY ONE OF THE PREFERRED METHODS MENTIONED IN THE ABOVE NOTE (NOTE #1).
- 3. DETAILS ARE ONLY APPLICABLE FOR ONE & TWO STORY BUILDINGS WITH A MEAN ROOF HEIGHT OF 30 FEET OR LESS.
- 4. ALL FASTENERS AND HARDWARE SHALL BE PERMANENTLY INSTALLED AND SHALL BE
- STAINLESS STEEL.


 5. MIN. 3/4" DIAM. WASHER REQUIRED AT EXTERIOR PANEL ATTACHMENT.
- 6. MIN. 2" EMBEDMENT OF SCREW THREADS INTO WOOD WALL FRAMING.
- 7. STRUCTURAL PANELS SHALL BE APA RATED CDX PLYWOOD.
- 8. PANELS SHALL BE PRE-CUT AND PRE-DRILLED FOR INSTALLATION EFFICIENCY.
- THE HOMEOWNER SHALL BE RESPONSIBLE FOR ROUTINE INSPECTION AND MAINTENANCE OF THE SYSTEM TO ENSURE FUNCTIONALITY FOR THE INTENDED PURPOSE DURING A STORM EVENT.
- 10. PANELS ATTACHED TO MASONRY SHALL BE ATTACHED USING VIBRATION-RESISTANT ANCHORS HAVING AN ULTIMATE WITHDRAWAL CAPACITY OF NOT LESS THAN 1,500 POUNDS.
- 11. MASONRY ANCHORS SHALL BE A MINIMUM OF 2.5 INCHES AWAY FROM WINDOW AND DOOR EDGES.
- 12. FASTENERS SHALL BE LOCATED NOT LESS THAN 1 INCH FROM THE EDGE OF THE PANEL.

	DEBRIS PROTECTION-STRUCTURAL PANEL SCHEDULE REQUIREMENTS		
STRUCTURAL		PANEL SPAN	
CO	MPONENT	MAX. STRUCTURAL PANEL SPAN = 44 INCHES	
	PANEL	5/8" APA RATED PRESSURE TREATED PLYWOOD	
D FRAMED	FASTENER	1/4" DIAMETER LAG SCREWS AT 12" O.C.	
WOOD	STIFFENER	2"x4" SYP No.2 PRESSURE TREATED AT 16" O.C.	
	PANEL	5/8" APA RATED PRESSURE TREATED PLYWOOD	
MASONRY	FASTENER	1/4" DIAMETER MASONRY SCREWS AT 12" O.C.	
Σ	STIFFENER	2"x4" SYP No.2 PRESSURE TREATED AT 16" O.C.	

NOTES:

- 1. PANEL REQUIREMENTS SHOWN IN TABLE ABOVE ALSO CAN BE APPLIED AT DOOR OPENINGS WHICH DO NOT EXCEED 44 INCHES IN WIDTH.
- 2. FOR VENTED OPENINGS NOT EXCEEDING 2'-0" x 2'-0", PROVIDE PANEL WITH FASTENERS AS INDICATED IN TABLE ABOVE, STIFFENERS ARE NOT REQUIRED.

NOT FOR CONSTRUCTION

CONSULTANT:	
OCHOOLIMIT.	
OUENT	
CLIENT:	

TWO STORY CMU AND 2ND FL. WOOD

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE

(DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR

PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO

INFORMATION HAS BEEN DEVELOPED FOR THE USE OF

BUILDING REQUIREMENTS IN PUERTO RICO, THIS

PROFESSIONAL SEALS:

SHEET TITLE:

RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY
APPROVED BY DDEC, PERMITS MANAGEMENT OFFICE
UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

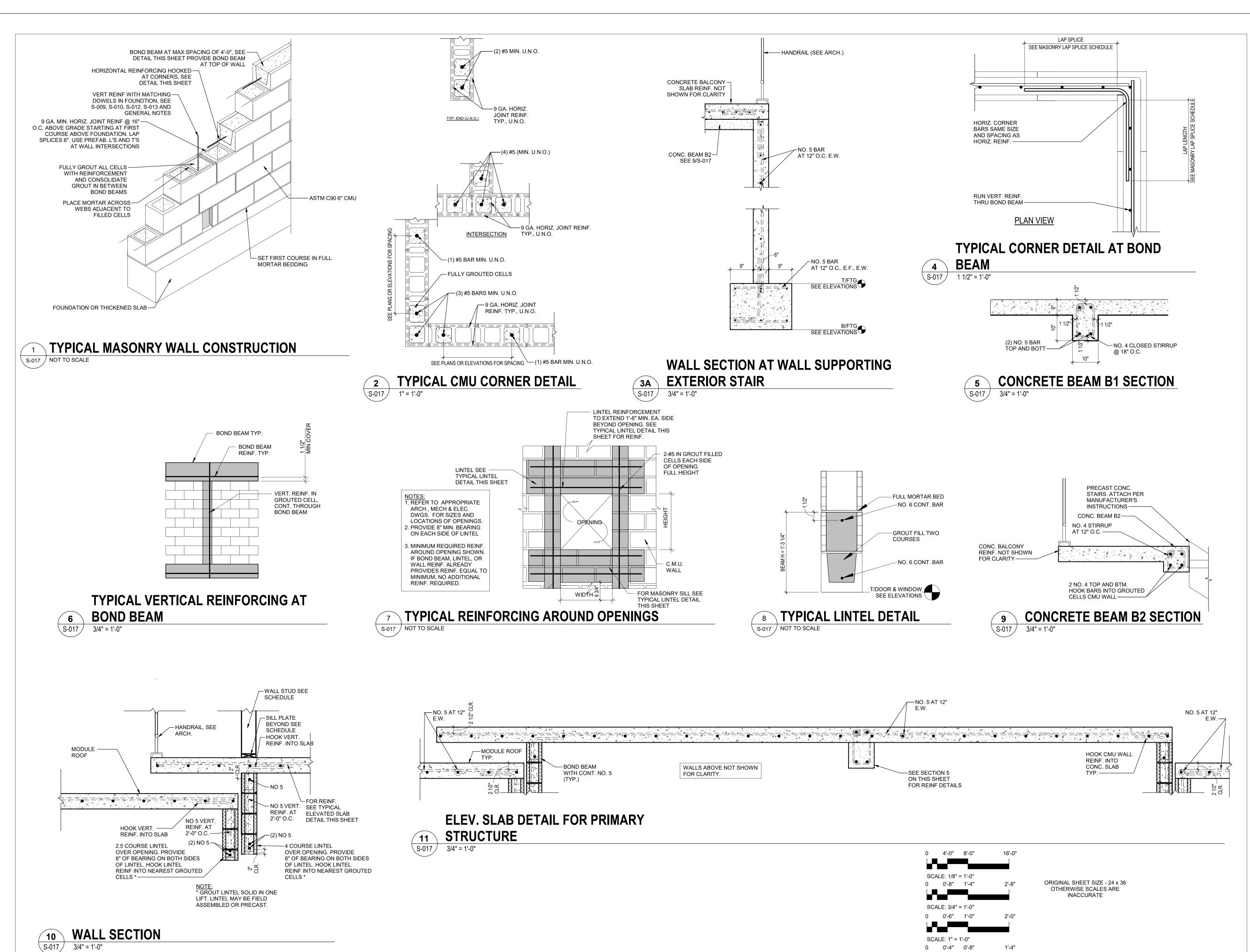
ISSUE LOG

No. Date Description

Window Protection Details

SHEET INFORMATION:

JOB No.


Date Issued: 5/15/2020

Drawn By:

Checked By:

QC Review:

Phase:

CMU AND 2ND FL. WOOD FL. WOOD

NOTE: PRIOR TO CONSTRUCTION CONTACT PUERTO RICO DEPARTMENT OF ECONOMIC DEVELOPMENT AND COMMERCE

(DDEC), PERMITS MANAGEMENT OFFICE (OGPe-DDEC) FOR BUILDING REQUIREMENTS IN PUERTO RICO. THIS INFORMATION HAS BEEN DEVELOPED FOR THE USE OF

UPON SUBMISSION OF A BUILDING PERMIT APPLICATION.

ISSUE LOG

PROFESSIONAL SEALS:

SHEET TITLE:

SHEET INFORMATION:

JOB No.

Drawn By:

Checked By

QC Review:

Phase:

NOT FOR CONSTRUCTION

SCALE: 1 1/2" = 1'-0"

PUERTO RICO RESIDENTS AND IS BELIEVED TO MEET THE PUERTO RICO BUILDING CODE. ALL DRAWINGS MUST BE SEPARATELY

Description

Masonry and Concrete

Details

Date Issued:

Sheet Number:

S-017

5/15/2020

STARR IIPR Prescriptive Homes Calculations

Two story Wood/CMU JOB TITLE House

JOB NO.		SHEET NO.	
CALCULATED BY	SW	DATE	2/6/20
CHECKED BY	MH	DATE	2/6/20

CS2018 Ver 2018.03.17 www.struware.com

STRUCTURAL CALCULATIONS

FOR

PR Homes: Two story Wood/CMU House

PUERTO RICO

STARR II

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

www.struware.com

Code Search

Code: ASCE 7 - 16

Occupancy:

Occupancy Group = R Residential

Risk Category & Importance Factors:

Risk Category = II

Wind factor = 1.00

Snow factor = 1.00

Seismic factor = 1.00

Type of Construction:

Fire Rating:

Roof = 0.0 hrFloor = 0.0 hr

Building Geometry:

Roof angle (θ) 4.00 / 12 18.4 deg Building length (L) 24.0 ft Least width (B) 20.0 ft Mean Roof Ht (h) 20.5 ft Parapet ht above grd Minimum parapet ht

Live Loads:

Roof 0 to 200 sf: 20 psf

200 to 600 sf: 24 - 0.02Area, but not less than 12 psf

over 600 sf: 12 psf

Floor:

Typical Floor	40 psf
Partitions	15 psf
Lobbies & first floor corridors	100 psf
Corridors above first floor	80 psf
Balconies (1.5 times live load)	60 psf

PR Prescriptive Homes Calculations

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

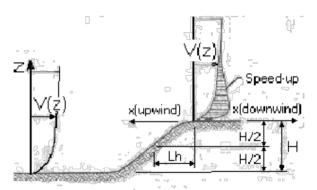
Wind Loads: ASCE 7- 16

Ultimate Wind Speed 190 mph Nominal Wind Speed 147.2 mph Risk Category II Exposure Category D

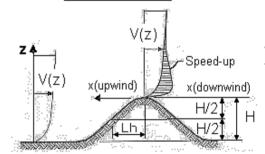
Enclosure Classif. Partially Open Building

Internal pressure +/-0.18
Directionality (Kd) 0.85
Kh case 1 1.088
Kh case 2 1.088
Type of roof Gable

Topographic Factor (Kzt)


Topography
Hill Height (H)
Half Hill Length (Lh)
Actual H/Lh = 0.00
Use H/Lh = 0.00
Modified Lh = 0.0 ft

From top of crest: x = Bldg up/down wind?


H/Lh= 0.00	$K_1 = 0.000$
x/Lh = 0.00	$K_2 = 0.000$
z/Lh = 0.00	$K_3 = 1.000$
Moon Doof Ut	

At Mean Roof Ht:

 $Kzt = (1+K_1K_2K_3)^2 = 1.00$ use 1.00

ESCARPMENT

2D RIDGE or 3D AXISYMMETRICAL HILL

Gust Effec	t Factor	Flexible structure if natural frequency < 1 Hz (T > 1 second).
h =	20.5 ft	If building h/B>4 then may be flexible and should be investigated.
B =	20.0 ft	h/B = 1.03
/z (0.6h) =	12.3 ft	

G = **0.85** Using rigid structure default

H< 15ft;exp D

∴ Kzt=1.0

Rigid Structure		Flexible or Dyn	amically Se	nsitive St	ructure		
ē =	0.13	34 1cy $(\eta_1) =$	0.0 Hz				
ℓ =	650 ft	Damping ratio (β) =	0				
z _{min} =	7 ft	/b =	0.80				
c =	0.13	/a =	0.11				
$g_Q, g_v =$	3.4	Vz =	199.8				
$L_z =$	574.7 ft	$N_1 =$	0.00				
Q =	0.95	$R_n =$	0.000				
$I_z =$	0.15	$R_h =$	28.282	η =	0.000	h =	20.5 ft
G =	0.90 use G = 0.85	$R_B =$	28.282	η =	0.000		
		$R_L =$	28.282	η =	0.000		
		$g_R =$	0.000				
		R =	0.000				
		Gf =	0.000				

Enclosure Classification

<u>Test for Enclosed Building:</u> Ao < 0.01Ag or 4 sf, whichever is smaller

Test for Open Building: All walls are at least 80% open.

Ao≥ 0.8Ag

Test for Partially Enclosed Building: Predominately open on one side only

	Input			Test	
Ao	500.0	sf	Ao ≥ 1.1Aoi	NO	
Ag Aoi	600.0	sf	Ao > 4' or 0.01Ag	YES	
Aoi	1000.0	sf	Aoi / Agi ≤ 0.20	YES	Building is NOT
Agi	10000.0	sf			Partially Enclosed

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:

Ao ≥ 1.1Aoi

Ao > smaller of 4' or 0.01 Ag

Aoi / Agi ≤ 0.20

Where:

Ao = the total area of openings in a wall that receives positive external pressure.

Ag = the gross area of that wall in which Ao is identified.

Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.

Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

<u>Test for Partially Open Building:</u> A building that does not qualify as open, enclosed or partially enclosed.

(This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall & roof openings (Aog):

Unpartitioned internal volume (Vi):

0 sf
0 cf
Ri = 1.00

Ground Elevation Factor (Ke)

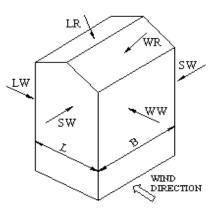
Grd level above sea level = 0.0 ft Ke = 1.0000

Constant = 0.00256 Adj Constant = 0.00256

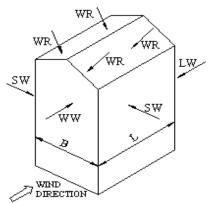
JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

Wind Loads - MWFRS all h (Except for Open Buildings)

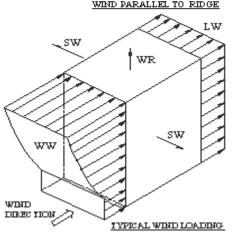
Kh (case 2) =	1.09	h =	20.5 ft	GCpi =	+/-0.18
Base pressure $(q_h) =$	85.5 psf	ridge ht =	22.4 ft	G =	0.85
Roof Angle (θ) =	18.4 deg	L =	24.0 ft	qi = qh	
Roof tributary area - (h/2)*L:	247 sf	B =	20.0 ft		


(h/2)*B: 205 sf

Ultimate Wind Surface Pressures (psf)


Ottimate Willia Carrace Freeze (per)									
	Wind Normal to Ridge			Wind Parallel to Ridge					
	B/L =	0.83	h/L =	1.03	L/B = 1.2		1.20	h/L = 0.86	
Surface	Ср	q_hGC_p	w/+q _i GC _{pi}	w/-q _h GCpi	Dist.*	Ср	q_hGC_p	w/ +q _i GC _{pi}	w/ -q _h GC _{pi}
Windward Wall (WW)	0.80	58.1	see tab	le below		0.80	58.1	see tab	le below
Leeward Wall (LW)	-0.50	-36.3	-51.7	-20.9		-0.46	-33.4	-48.8	-18.0
Side Wall (SW)	-0.70	-50.9	-66.2	-35.5		-0.70	-50.9	-66.2	-35.5
Leeward Roof (LR)	-0.60	-43.6	-59.0	-28.2		Inc	cluded in w	indward roof	
Neg Windward Roof pressure	-0.79	-57.7	-73.1	-42.3	0 to h/2*	-1.09	-79.3	-94.7	-63.9
Pos/min Windward Roof press.	-0.18	-13.1	-28.5	2.3	h/2 to h*	-0.76	-55.0	-70.4	-39.7
					h to 2h*	-0.64	-46.7	-62.1	-31.3
					Min press.	-0.18	-13.1	-28.5	2.3

^{*}Horizontal distance from windward edge


	Windward Wall Pressures at "z" (psf)							Combined WW + LW	
				V	Vindward Wa	all	Normal	Parallel	
	Z	Kz	Kzt	q_zGC_p	$w/+q_iGC_{pi}$	$w/-q_hGC_{pi}$	to Ridge	to Ridge	
-	0 to 15'	1.03	1.00	55.0	39.6	70.4	91.4	88.5	
	20.0 ft	1.08	1.00	57.9	42.5	73.2	94.2	91.3	
h=	20.5 ft	1.09	1.00	58.1	42.7	73.5	94.5	91.5	
ridge =	22.4 ft	1.10	1.00	59.0	43.6	74.4	95.3	92.4	

WIND NORMAL TO RIDGE

WIND PARALLEL TO RIDGE

NOTE: See figure in ASCE7 for the application of full and partial loading of the above wind pressures. There are 4 different loading cases.

Parapet			
Z	Kz	Kzt	qp (psf)
0 0 ft	1 03	1 00	0.0

Windward parapet: 0.0 psf (GCpn = +1.5)Leeward parapet: 0.0 psf (GCpn = -1.0)

Windward roof overhangs (add to windward roof pressure): 58.1 psf (upward)

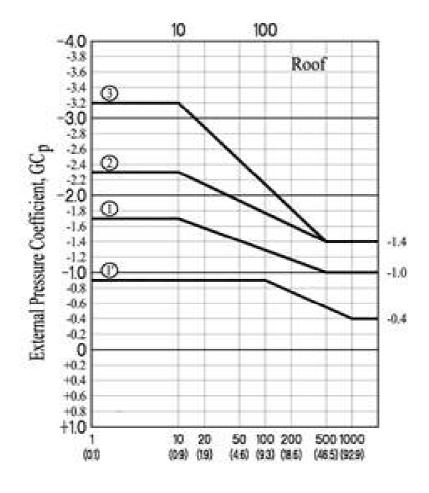
ASCE 7-16 Wind Component and Cladding Two story home modules only

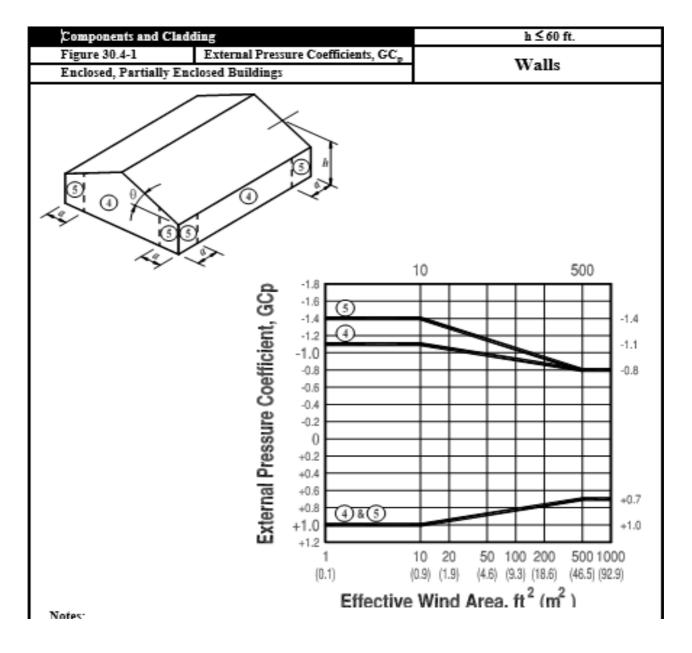
(ASCE 7-16 Part 1 Pg 591)

MRH=	8.67					
Kzt =	1		GCp Values ASCE 7-	16 Fig 30.4	1-2B	
Kz =	1 ASCE 7-16 Table 26.10		10sf	50sf	1	.00sf
Kd =	0.85 ASCE 7-16 Table 26.6-1	ZONE 1		-1.7	-1.4	-1.3
V =	250	ZONE 1'		-0.9	-0.9	-0.9
qz =	136 psf	ZONE 2		-2.3	-1.9	-1.9
Gcpi =	0.18 ASCE 7-16 Figure 26.10-1	POS ALL		0.3	0.23	0.2
		ZONE 3		-3.2	-2.88	-2.46

Note Pressures for one story no modules and one story wood with modules are the same b/c MRH <15'

Roof C&C Pressures


	10sf	50sf	100sf
ZONE 1	-255.7	-214.9	-201.3
ZONE 1'	-146.9	-146.9	-146.9
ZONE 2	-337.3	-282.9	-282.9
POS ALL	65.3	55.8	51.7
ZONE 3	-459.7	-416.2	-359.0


Wall GCp Values ASCE 7-16 Fig 30.4-1

	10sf	50sf	100sf	
NEG 4	-	1.1	-1	-0.9
NEG 5	-	1.4	-1.18	-1.1
POS 4 & 5		1	0.9	0.8

Wall C & C Pressures

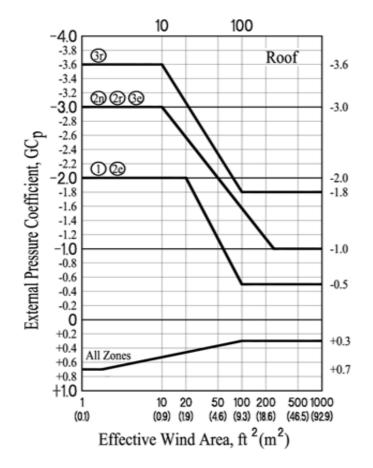
	10sf	50sf	100sf
NEG 4	-174.08	-160.48	-146.88
NEG 5	-214.88	-184.96	-174.08
POS 4 & 5	160.48	146.88	133.28

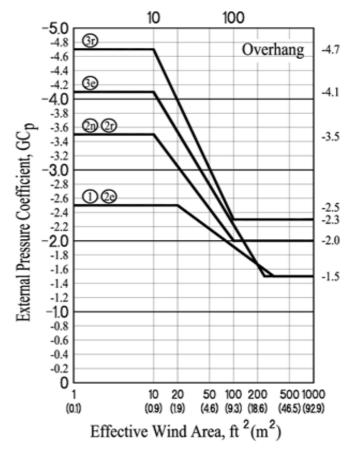
ASCE 7-16 Wind Component and Cladding Two story home no modules

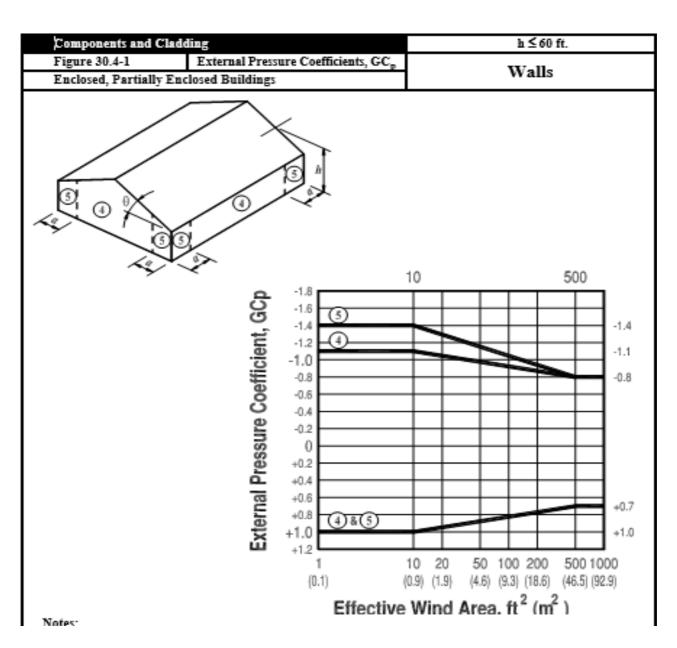
(ASCE 7-16 Part 1 Pg 591)

MRH=	20.45				
Kzt =	1	GCp Value	es ASCE 7-16 F	ig 30.4-2B	
Kz =	1.09 ASCE 7-16 Table 26.10		10sf	50sf	100sf
Kd =	0.85 ASCE 7-16 Table 26.6-1	NEG 1 & 2E	-:	2 -1.1	-0.5
V =	190	NEG 2N, 2R, & 3E	-:	3 -2	-1.6
qz =	85.623424 psf	NEG 3R	-3.	5 -2.4	-1.8
Gcpi =	0.18 ASCE 7-16 Figure 26.10-1	POS ALL	0.	0.39	0.3
		OVERHANG 1 & 2E	-2.	-2.19	-1.9
		OVERHANG 2N&2R	-3.	5 -2.5	-2
	Note Pressures for one story no modules	OVERHANG 3E	-4.	1 -2.8	-2.3
	and one story wood with modules are the same b/c MRH <15'	OVERHANG 3R	-4.	7 -3	-2.3

Roof C&C Pressures


	10sf	50sf	100sf
NEG 1 & 2E	-186.7	-109.6	-58.2
NEG 2N, 2R, & 3E	-272.3	-186.7	-152.4
NEG 3R	-323.7	-220.9	-169.5
POS ALL	58.2	48.8	41.1
OVERHANG 1 & 2E	-229.5	-202.9	-178.1
OVERHANG 2N&2R	-315.1	-229.5	-186.7
OVERHANG 3E	-366.5	-255.2	-212.3
OVERHANG 3R	-417.8	-272.3	-212.3


Wall GCp Values ASCE 7-16 Fig 30.4-1


	10sf	50sf	100sf	
NEG 4	-	1.1	-1	-0.9
NEG 5	-	1.4	-1.18	-1.1
POS 4 & 5		1	0.9	0.8

Wall C & C Pressures

	10sf	50sf	100sf
NEG 4	-109.598	-101.036	-92.4733
NEG 5	-135.285	-116.448	-109.598
POS 4 & 5	101.0356	92.4733	83.91096

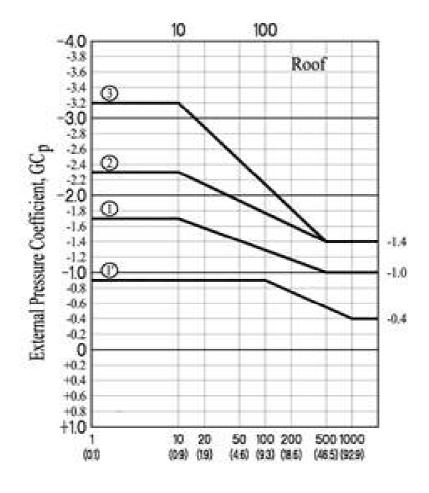
ASCE 7-16 Wind Component and Cladding Two story home One Story Option

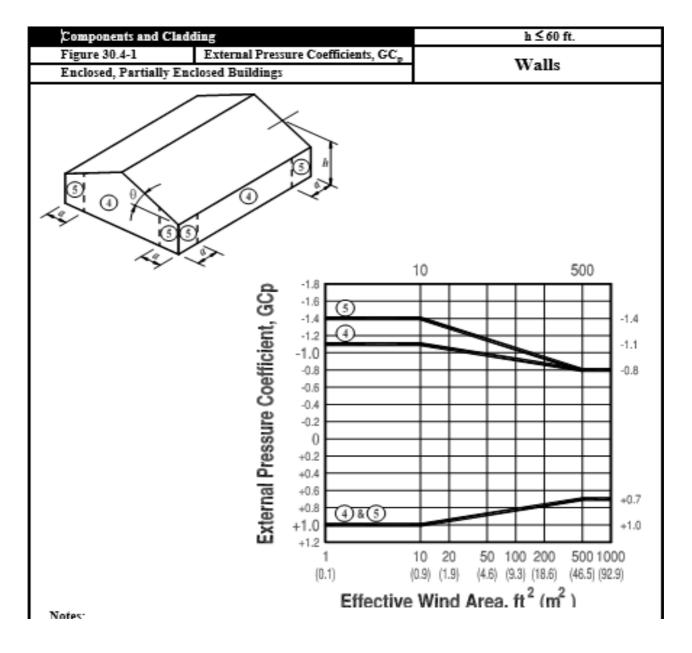
(ASCE 7-16 Part 1 Pg 591)

MRH=	11.42					
Kzt =	1		GCp Values ASCE 7-1	6 Fig 30.4	-2B	
Kz =	1.03 ASCE 7-16 Table 26.10		10sf	50sf	1	.00sf
Kd =	0.85 ASCE 7-16 Table 26.6-1	ZONE 1	-	·1.7	-1.4	-1.3
V =	190	ZONE 1'	-	0.9	-0.9	-0.9
qz =	80.910208 psf	ZONE 2	-	-2.3	-1.9	-1.9
Gcpi =	0.18 ASCE 7-16 Figure 26.10-1	POS ALL		0.3	0.23	0.2
		ZONE 3	-	-3.2	-2.88	-2.46

Note Pressures for one story no modules and one story wood with modules are the same b/c MRH <15'

Roof C&C Pressures

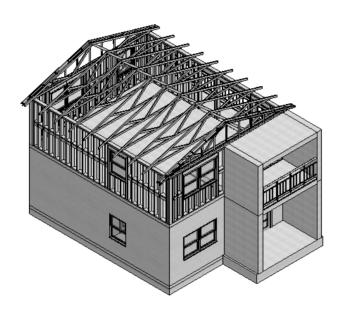

	10sf	50sf	100sf
ZONE 1	-152.1	-127.8	-119.7
ZONE 1'	-87.4	-87.4	-87.4
ZONE 2	-200.7	-168.3	-168.3
POS ALL	38.8	33.2	30.7
ZONE 3	-273.5	-247.6	-213.6


Wall GCp Values ASCE 7-16 Fig 30.4-1

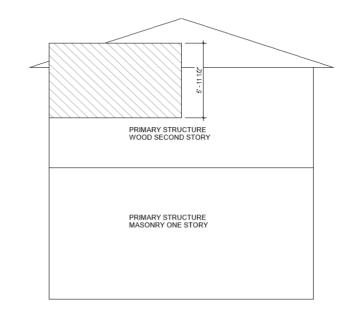
	10sf	50sf	100sf	
NEG 4	-	1.1	-1	-0.9
NEG 5	-	1.4	-1.18	-1.1
POS 4 & 5		1	0.9	0.8

Wall C & C Pressures

	10sf	50sf	100sf
NEG 4	-103.565	-95.474	-87.383
NEG 5	-127.838	-110.038	-103.565
POS 4 & 5	95.47405	87.38302	79.292



PR Prescriptive Homes Calculations


JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

ASD WIND PRESSURES								
	Windward Wall Pressures at "z" (psf)						Combined	WW + LW
	Windward Wall N				Normal	Parallel		
	Z	Kz	Kzt	qzGCp	w/+qiGCpi	w/-qhGCpi	to Ridge	to Ridge
	0 to 15'	1.0	1.0	55.0	23.8	42.3	54.8	53.1
h=	20	1.0	1.0	57.9	25.5	43.9	56.5	54.8
ridge =	22.4	1.1	1.0	59.0	26.2	44.6	57.2	55.5

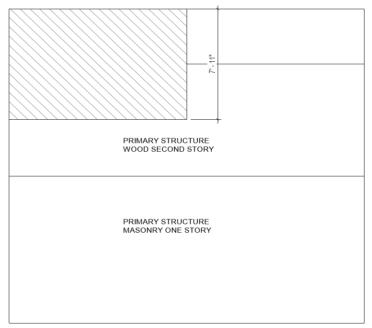
Note: Modules not included because they are acting independent of the primary structure and are not hard attached.

Roof Diaphragm Load Primary Structure Wind Parallel to Ridge:

_		
B =	24	ft
Wall Ht. Wood =	8.00	ft
Roof Ht. Above 2nd story=	11.90	ft
Roof Ht. Avg =	9.95	ft
Diaphragm Trib Area/ft =	5.95	Ft^2/ft
Diaphragm Load/ft Main =	330	lb/ft
Diaphragm Shear/Ft =	137	lb/ft
Wall Shear 24' Wall Primary	3300	lb
Diaphragm Moment =	23758	lb*ft
Diaphragm Chord T/C =	1188	lbs
Diaphragm Chord T/C per ft =	49	lbs/ft

TRIBUTARY FOR SHEAR WALL WIND PARALLEL TO RIDGE

Note: Diaphragm transfers load to two adjacent shear walls

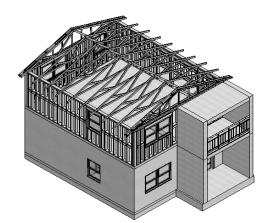

Doesn't control

Doesn't control

Roof Diaphragm Load Primary S	tructure Wind Perpe	ndicular to	Ridge:
B =	20	ft	o/o
Wall Ht. =	8.00	ft	
Roof Ht. Above 2nd Story =	11.90	ft	
Roof Ht. Avg =	11.90	ft	
Diaphragm Trib Area/ft =	7.90	Ft^2/ft	
Diaphragm Load/ft =	452	lb/ft	
Diaphragm Total Shear/ft =	226	lb/ft	
Wall Shear 20' Wall =	4519	lbs	ASD
Diaphragm Moment =	22594	lb*ft	
Diaphragm Chord T/C =	941	lbs	

47 lbs/ft

Diaphragm Chord T/C per ft =


TRIBUTARY FOR SHEAR WALL WIND PERPENDICULAR TO RIDGE

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

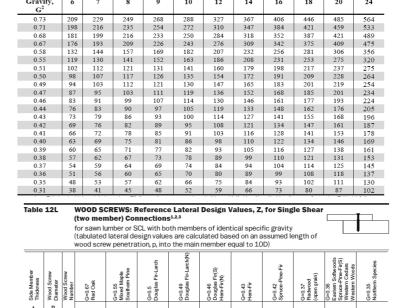
Seismic Forces		
Ss =	1.35	
S1 =	0.53	
Sms =	1.35	
Sm1 =	0.795	
Sds =	0.9045	
Sd1 =	0.3551	
CMU R =	5	
Wood R =	6.5	
Cs second story wood =	0.1392	
Cs first story CMU =	0.1809	
Wall Weight CMU =		psf
Wall Weight CMU total primary =	53	kips
Wall Weight CMU total module =	33	kips
Wall Weight Wood =	20	psf
Wall Weight Wood total =	14.08	kips
Slab Weight primary =	36	kips
Slab Weight module =	18	kips
Roof Weight wood =	13.44	
Wal Avg Height =	10	ft
Wall Seismic Pressure Wood =	2.78	
Wall Seismic Pressure CMU =	10.854	psf
Fpx Diaphragm Min = 0.2*Sds*Ie*w =	0.18	
By Inspection Doesn't Control		
Wall Anchorage Min = 0.4Sds*ka*Ie*Wp =	0.515	
Wall Anchorage Design Pressure =	10.3	psf
CMU Base Shear primary =	16.06	kips
Wood Base Shear 2nd story =	3.83	kips
CMU Base Shear Module =	9.16	kips
ASD CMU Base Shear Primary/ Shear Wall =	4.82	
ASD Wood Base Shear Primary/Shear Wall =	1.15	kips

Doesn't Control
Doesn't Control

Doesn't Control

Doesn't Control See CMU Wind Base Shears Doesn't Control See Wind Base Shears Wood

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20


Cut Thread or Rolled Thread Wood Screw Reference Withdrawal Design Values, W¹

Tabulated withdrawal design values, W, are in pounds per inch of thread penetration into side grain of wood

Roof Uplift Fastener Design C&C	
ASD Wind Uplift Load =	-252 psf
Spacing =	3 in
Trib =	1 sq ft
Uplift on fastener (ASD)=	-252 lbs
Shear on fastnener (ASD) per foot =	226 lbs
Shear on fastnener (ASD) =	56.48580294 lbs

BY INSPECTION NAILS WILL NOT WORK (UPLIFT VALUES AROUND 30lbs/in PENETRATION) TRY # 12 SCREW

From Table 12.2 B				
W =	186	lbs/in pen		
Cd =	1.6			
W' =	297.6	lbs/in pen		
From Table 12L				
Z =	66	lbs (10*0.2	16" pen = 2.	16" pen (3" screw)
Z' =	105.6	lbs		
penetration into main member p =	2.28	in		
Angle between wood surface and applied load =	77.37	deg		
Angle between wood surface and applied load radians=	1.35			
ASD Allowable Combined Lateral and Withdrawl Loading (Za')				
12.4.2 =	538.9	lbs	OK >	258 lbs
12.4.1 Lag Screws and Wood Screws				

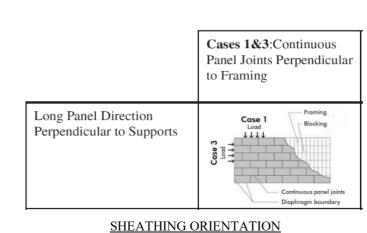
Where a lag screw or wood screw is subjected to combined lateral and withdrawal loading, as when the fastener is inserted perpendicular to the fiber and the load acts at an angle, α , to the wood surface (see Figure 12F), the adjusted design value, Z_{α} ', shall be determined as follows (see Appendix J):

$$Z_{\alpha}' = \frac{(W'p)Z'}{(W'p)\cos^2\alpha + Z'\sin^2\alpha}$$
 (12.4-1)

where:
$$\alpha = \text{angle between the wood surface and the direction of applied load, degrees}$$

$$p = \text{length of thread penetration into the main}$$

WOOD SCREWS LOADED AT AN ANGLE II


1386 lbs

258 lbs

250 psf

250 lbs

$\underline{\text{WITHDRAWL AND SHEAR VALUES FOR SCREWS IN WOOD SHEATHING}}$

12.4.2 Nails and Spikes

Where a nail or spike is subjected to combined lateral and withdrawal loading, as when the nail or spike is inserted perpendicular to the fiber and the load acts at an angle, α , to the wood surface, the adjusted design value, Z_{α} ', shall be determined as follows:

WOOD SCREWS LOADED AT AN ANGLE I

Sheathing Design for Shear Sheathing Perpendicular to Trusses Case 1 Wind Parallel to Ridge

ASD Wind Load/ft =	226	lb/ft			
Nominal Wind Load/ft =	452	lb/ft			
L =	24	ft			
W =	20	ft			
L/W Ratio =	1.2	OK > 4:1 E	Blocked Dia	phragm per NDS Table	e 4.2.4
Supports at 3" on center sheathing capacity from Table 4.2A 23/32" =	1016	lbs/ft	OK>	452 lb/ft	

NOTE SAME SPACING FOR CASE 1 & 3

Check with APA Panel Design Specification for 48/24 (23/32)

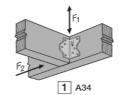
ASD Panel Capacity Shear /ft =	350	lbs		
Structural 1 multiplier =	1.3			
Cd =	1.6			
ASD Panel Shear /ft Design =	728	lbs/ft	OK>	226 lb/ft

Framing Angles and Plates (cont.)

	Model	Type of	Fasteners	Direction	DF/SP Allowable Loads		oads	SPF/I	HF Allowable I	Loads	Code
	No. Connection	(in.)	of Load	Floor (100)	Roof (125)	(160)	Floor (100)	Roof (125)	(160)	Ref.	
		1		Ft	395	480	545	340	415	480	
			(8) 0.131 x 11/2	F26	395	430	430	340	370	370	IBC, F
3	A34	1		F ₁	640	640	640	550	550	550	LA
			(8) #9 x 1 1/2 SD	F ₂	495	495	495	425	425	425	1
				Uplift	240	240	240	170	170	170	-

Blocking Connection Into Wall

Blocking Connection Into Wan	
TRY A34 at 0'-6" O.C.	
Shear ASD demand =	68.74 lb/ft
Uplift Demand =	-99.44 lb
Shear capacity =	640 lb
Uplift Capacity =	240 lb
Combined Utilization =	0.521728929 OK


Truss Holddowns

 $\overline{\text{Uplift (ASD)}}$ at top plate =

(2) MTS 12 uplift =	1980	lbs	OK
Screw Head Pull Through			
W =	171	lbs	
Cd =	1.6		
W' =	273.6	lbs	OK >
Sheathing Uplift C and C check			
Applied Uplift ASD =	250	psf	
Span =	2	ft	
Fb*S (4 PLY) 48/24 =	1000	lb in/ft	
Cd =	1.6		
wb allowable = 96 Fb*S*Cd/Span^2 =	266.6666667	psf	OK >
Panel Vert Shear C & C Check			
ASD Shear in the plane Fs	250	lbs	
Structural 1 multiplier =	1		
Cd =	1.6		
wb = 20Fs/span =	333.3333333	psf	OK >

SUMMARY	
Boundary Sheathing Nailing	#12 3" screw at 3" on center
Interior Sheathing Nailing	#12 3" screw at 6" on center
Blocking Type	3" x 6" at all panel edges
Blocking Nailing into Wall	A34 at 6" o.c. with (8) no 9 1.5"
Truss to Top Plate Conn	(2) MTS 12/MTS 30
4 ply or better OSB 48/24 span rating 23/32" sheathing	
Fy screw =	100000 psi

A34 FRAMING ANGLES

	arroctoral i moitig	nier				
	1.0	1.0	1.0	1.8	1.0	1.8
PANEL SHEAR IN	THE PLANE, F,(I	b/Q) (lbf/ft of p	anel width)			
1/4	105	135	105	105	135	105
11/32	145	190	145	145	190	145
3/8	165	215	165	165	215	165
15/32	220	285	220	220	285	220
1/2	235	305	235	235	305	235
19/32	290	375	290	290	375	290
5/8	310	405	310	310	405	310
23/32	350	455	350	350	455	350
3/4	360	470	360	360	470	360
7/8	425	555	425	425	555	425
1	470	610	470	470	610	470
1-1/8	525	685	525	525	685	525

APA PANEL SHEAR CAPACITY

ALATANEL SHEAR CALACITY
72
For a three-span condition;
20 F _s (lb/Q)
$w_s = \frac{20 F_s(lb/Q)}{\ell_2}$
Where:
w _s = uniform load based on shear strength (psf)
$F_s(Ib/Q)$ = design shear strength capacity (lbf/ft)
ℓ_2 = clear span (in., center-to-center of supports minus support width)
For a three-span condition:
*
$W_b = \frac{120 F_b S}{\ell^2}$
0 / 2

ℓ_1 = span (in., center-to-center of supports) SHEATHING CAPACITY FORMULAS

 $\begin{aligned} \mathbf{w}_{\mathrm{b}} &= \text{uniform load based on bending strength (psf)} \\ \mathbf{F}_{\mathrm{b}}\mathbf{S} &= \text{design bending strength capacity (lbf-in./ft)} \end{aligned}$

JOB TITLE PR Homes: One story Wood House Calculations

PR Prescriptive Homes Calculations

	Str	ress Parallel	to Strength A	xis .	ar to Streng	Strength Axis		
Span _		Plywood						
Rating	3-ply	4-ply	5-ply	OSB	3-ply	4-ply	5-ply	OSB
ANEL BEI	NDING STIFFN	IESS, EI (lbf-	n.²/ft of pane	l width)				
24/0	66,000	66,000	66,000	60,000	3,600	7,900	11,000	11,00
24/16	86,000	86,000	86,000	78,000	5,200	11,500	16,000	16,00
32/16	125,000	125,000	125,000	115,000	8,100	18,000	25,000	25,00
40/20	250,000	250,000	250,000	225,000	18,000	39,500	56,000	56,00
48/24	NA	440,000	440,000	400,000	NA	65,000	91,500	91,50
16 oc	165,000	165,000	165,000	150,000	11,000	24,000	34,000	34,00
20 oc	230,000	230,000	230,000	210,000	13,000	28,500	40,500	40,50
24 oc	NA	330,000	330,000	300,000	NA	57,000	80,500	80,50
32 oc	NA	NA	715,000	650,000	NA	NA	235,000	235,00
48 oc	NA	NA	1,265,000	1,150,000	NA	NA	495,000	495,00
	Structural I M	ultiplier						
	1.0	1.0	1.0	1.0	1.5	1.5	1.6	1.
ANEL BEI	NDING STREN	GTH, F _b S (lb	f-in./ft of pan	el width)				
24/0	250	275	300	300	54	65	97	9
24/16	320	350	385	385	64	77	115	11
32/16	370	405	445	445	92	110	165	16
40/20	625	690	750	750	150	180	270	27
48/24	NA	930	1,000	1,000	NA	270	405	40
16 oc	415	455	500	500	100	120	180	18
20 oc	480	530	575	575	140	170	250	25
24 oc	NA	705	770	770	NA	260	385	38
32 oc	NA	NA	1,050	1,050	NA	NA	685	68
48 oc	NA	NA	1,900	1,900	NA	NA	1,200	1,20

APA PANEL BENDING CAPACITY

Table A ural Panel Design Capacities Based on Span Ratings^{(s}

			W	ood S	tructur	ral Pan	el Des	ign Capac	ities Ba	sed on	Span Ra	tings ^(a)			
					Stren	gth			Planar	Shear		Stiffr	ness and l	Rigidity	
Span Rating		Bending F ₅ S (lb-in/ft of width) Axial Tension F ₁ A (lb/ft of width)		Compr Fa	Axial Compression F _c A (lb/ft of width)		Shear through the thickness (B.C.) F _V t _v (Ib/in of shear-resisting panel length) Shear through the shear through the shear through the shear through the shear through th		Bend El (lb-in²/ft o		Axial EA (lb/ft of width x 10 ⁵)		Rigidity through the thickness G _v , t _v (lb/in of panel depth)		
			Capacities relative to strength axis (d)												
		0°	90°	0°	90°	0°	90°	0°/90°	0°	90°	0°	90°	0°	90°	0°/90°
Sheathir	ng Span [®]														
24/0	3-ply	250	54	2,300	600	2,850	2,500	53	156	273	66,000	3,600	3.35	2.90	25,000
32/16	3-ply	370	92	2,800	1,250	3,550	3,100	62	198	347	126,500	8,100	4.15	3.60	27,000
	4-ply	407	110	2,800	1,250	5,325	4,650	81	198	479	126,500	17,820	4.15	3.60	35,100
	5-ply	444	166	3,640	1,625	5,325	4,650	93	215	165	126,500	25,110	4.15	3.60	40,500
40/20	3-ply	625	150	2,900	1,600	4,200	4,000	68	246	431	247,500	18,000	5.00	4.50	28,500
	4-ply	688	180	2,900	1,600	6,300	6,000	88	246	595	247,500	39,600	5.00	4.50	37,050
	5-ply	750	270	3,770	2,080	6,300	6,000	102	267	205	247,500	55,800	5.00	4.50	42,750
48/24	4-ply	930	270	4,000	1,950	7,500	7,200	98	300	725	440,000	64,900	5.85	5.00	40,300
	5-ply	1,014	405	5,200	2,535	7,500	7,200	113	325	250	440,000	91,450	5.85	5.00	46,500

APA WOOD PANEL SHEAR CAPACITIES

Model	Strap Length		Total Quantity of Fasteners		/SP Uplift Loads 60)	SPI Allowable (1	Code																	
No.	(in.)	0.148" x 3" Nails	0.148" x 1½" Nails	0.148" x 3" Nails	0.148" x 1½" Nails	0.148" x 3" Nails	0.148" x 1½" Nails	Ref.																
LTS12	12																							
LTS16	16	12	12	660	600	570	515																	
LTS20	20							IBC.																
MTS12	12							FL,																
MTS16	16										LA													
MTS20	20	14	14	990	990	850	850																	
MTS30	30	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	330	990	650	650	
MTS24C	24								FL															
MTS30C	30							FL																
HTS16	16	16	16	1,310	1,310	1,125	1,125																	
HTS20	20							IBC,																
HTS24	24	20	24	1,310	1,310	1,125	1,125	FL,																
HTS30	30	20	24	1,310	1,310	1,120	1,120	LA																
HTS30C	30																							

MTS STRAP CAPACITY

SHEET NO. JOB NO. DATE 2/6/20 CHECKED BY $\overline{\text{MH}}$ 2/6/20 DATE

Table 4.2A Nominal Unit Shear Capacities for Wood-Frame Diaphragms

Minimum

Fastener Penetration in

Framing Member or

Blocking

(in.)

1-1/4

1-3/8

1-1/2

1-1/4

1-3/8

1-1/2

Nominal

Panel

Thickness

(in.)

5/16

3/8 15/32

5/16

3/8 3/8

7/16 15/32 15/32

19/32

Blocked Wood Structural Panel Diaphragms^{1,2,3,4,5}

									_								
								Α							E	3	
							s	EISMIC							WI	ND	
														Nail :	Spacing (in	n.) at diaph	ragm
														bounda	ries (all cas	ses), at cor	ntinuous
		Nail	Spacing	(in.) at	diaphrag	gm boun	daries (a	II cases), a	t continue	ous panel	edges pa	rallel to	load	panel ed	ges paralle	I to load (C	ases 3 &
					(Case	es 3 & 4)	, and at a	all panel ed		s 5 & 6)					t all panel (es 5 & 6)
	Minimum		6			4			2-1/2			2		6	4	2-1/2	2
	Nominal Width													Nail Spa	cing (in.) a		el edges
Ī	of Nailed Face				Nail Spa		at other	panel edge	es (Cases	1, 2, 3, &	4)					2, 3, & 4)	
	at Adjoining	6				6			4			3		6	6	4	3
5	Panel Edges	V ₆	G	3a	V ₆	0	3a	V ₆		ia .	Vs	G	ia	Vw	Vw	Vw	Vw
	and Boundaries	(plf)	(kips	s/in.)	(plf)	(kip	s/in.)	(plf)	(kips	s/in.)	(plf)	(kips	s/in.)	(plf)	(plf)	(plf)	(plf)
	(in.)		OSB	PLY		OSB	PLY		OSB	PLY		OSB	PLY				
	2	370	15	12	500	8.5	7.5	750	12	10	840	20	15	520	700	1050	1175
	3	420	12	9.5	560	7.0	6.0	840	9.5	8.5	950	17	13	590	785	1175	1330
	2	540	14	11	720	9.0	7.5	1060	13	10	1200	21	15	755	1010	1485	1680
	3	600	12	10	800	7.5	6.5	1200	10	9.0	1350	18	13	840	1120	1680	1890
	2	640	24	17	850	15	12	1280	20	15	1460	31	21	895	1190	1790	2045
	3	720	20	15	960	12	9.5	1440	16	13	1640	26	18	1010	1345	2015	2295
	2	340	15	10	450	9.0	7.0	670	13	9.5	760	21	13	475	630	940	1065
	3	380	12	9.0	500	7.0	6.0	760	10	8.0	860	17	12	530	700	1065	1205
	2	370	13	9.5	500	7.0	6.0	750	10	8.0	840	18	12	520	700	1050	1175
	3	420	10	8.0	560	5.5	5.0	840	8.5	7.0	950	14	10	590	785	1175	1330
	2	480	15	11	640	9.5	7.5	960	13	9.5	1090	21	13	670	895	1345	1525
	3	540	12	9.5	720	7.5	6.0	1080	11	8.5	1220	18	12	755	1010	1510	1710
	2	510	14	10	680	8.5	7.0	1010	12	9.5	1150	20	13	715	950	1415	1610
	3	570	11	9.0	760	7.0	6.0	1140	10	8.0	1290	17	12	800	1065	1595	1805
	2	540	13	9.5	720	7.5	6.5	1060	11	8.5	1200	19	13	755	1010	1485	1680
	3	600	10	8.5	800	6.0	5.5	1200	9.0	7.5	1350	15	11	840	1120	1680	1890
	2	580	25	15	770	15	11	1150	21	14	1310	33	18	810	1080	1610	1835
_	3	650	21	14	860	12	9.5	1300	17	12	1470	28	16	910	1205	1820	2060
	2	640	21	14	850	13	9.5	1280	18	12	1460	28	17	895	1190	1790	2045
	3	720	17	12	960	10	8.0	1440	14	11	1640	24	15	1010	1345	2015	2295

TABLE 4.2A SHEATHING SHEAR CAPACITIES

Copyright @ American Wood Council. Downloaded/printed pursuant to License Ac

Sheathing

Grade

Structural I

Sheathing and Single-Floor

Common Nail Size

8d

10d

6d

8d

10d

PR Prescriptive Homes Calculations

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20
· · · · · · · · · · · · · · · · · · ·		

Top Plate Chord Design

Max Chord Tension/Compression =	1188 1	bs	
Ft =	350 g	osi	Controls because fully braced
Fc =	1000 g	osi	By inspection Ok for wall shear force
Cd =	1.6		
As pro (2) 2 x 6 =	16.5 i	n^2	
F't =	560 g	osi	
F't allowable tension =	9240 1	bs	OK > 1188 lbs

Top Plate Splice Design

Try MST72 Strap	Assuming splice is at a position that has to transfer full tension/compresson or full shear							
Try MST72 Strap	Max Chord Tension/Compression =	1188	lbs					
7 1	Wall Shear =	4519	lbs	Controls				
Allowable Tension 6730 lbs OK	Try MST72 Strap							
Allowable Telision 0/30 lbs OK	Allowable Tension	6730	lbs	OK>				

	18	(46) U.162 x 21/2	6,235	5,405
	30	(48) 0.162 x 21/2	6,505	5,640
MST72	24	(54) 0.162 x 21/2	6,730	6,345
	18	(62) 0.162 x 21/2	6,730	6,475

See footnotes below.

1295.238

4519 <u>MST72 ALLOWABLE TENSION</u>

Wall Out of Plane Stud Design

102.0	psf	
1.0	ft	
102.00	lb/ft	
8	ft	
816.00	ft*lb	
7.56	in^3	
1295.24	psi	
1.6		
1100	psi	
1760	psi	OK >
20.8	in^4	
1100000	psi	
0.410853147	in	
0.533333333	in	OK
ative pressure)	•	
	1.0 102.00 8 816.00 7.56 1295.24 1.6 1100 20.8 1100000 0.410853147 0.5333333333	102.0 psf 1.0 ft 1.0 ft 102.00 lb/ft 8 ft 816.00 ft*lb 7.56 in^3 1295.24 psi 1.6 1100 psi 1760 psi 20.8 in^4 1100000 psi 0.410853147 in 0.5333333333 in ative pressure)

Try 3" spacing s =	3		
Ae =	0.5	sf	
C&C Wind Pressure =	-169.2	psf	
Applied Withdrawl =	-84.6	lbs	
Max ASD Fastener Shear =	137	lbs	
Max ASD Fastener Shear Per Fastener =	34.37181273	lbs	
Max combined ASD Fastener load =	161.4434694	lbs	
Use 2" #12 screw at 3" on center interor and edges capacity =	538.9292165	lbs	OF

Wall In Plane Design Using Segmented Shear Wall Method

Max Wall Shear 20' wall =	4519 lb	o/ft
Max Wall Shear 24' wall =	3300 lb	os

SHEAR WALL 20' WITH DOOR AND 6' WINDOW

See "20' Shear Wall Design" Tab

SHEAR WALL 20' WITH 6' AND 3' WINDOW

See "20' Shear Wall Design" Tab

SHEAR WALL 24' WITH 12' OPENING AND 3' WINDOW

See "24' Shear Wall Design" Tab

NOTE SEE ROOF DESIGN FOR WALL SHEATHING OUT OF PLANE CAPACITY

B/C ROOF SPAN AND PRESSURES ARE GREATER WALL SHEATHING OUT OF PLANE DOESN'T CONTROL

Stud Connection to Top Plate/Sill Plate

Uplift =	-56.82061907	psf
Stud Spacing =	1	ft
Uplift per stud =	-375.0160858	
Roof Weight x 0.6 =	153.84	lb/ft
Wall Weight x 0.6 =	49.5	lb/ft
Total Uplift =	-171.6760858	lb

USE TSP ANCHOR BOTTOM OF STUDS TSP ANCHOR TOP OF STUDS ALLOWABLE UPLIFT = 755 LBS

Sill Plate Attachment to Foundation

See Shear Wall Design Tabs

Stud Connection to Top Plate/Sill Plate at Opening and Header Straps

state connection to Top Timet/Sim Timet at opening and Tie			
Largest Opening =	6	ft	1
Uplift at window jack/king studs =	-1125.048258	lb	1
Six foot opening uplift =	-562.5241288	lb	1
Dead load =	540		1
Required uplift capacity at six foot opening =	-22.52412876	lbs	1
Required uplift capacity at twelve foot opening =	-45.04825752	lbs	1
USE MSTA 30 strap around 6 foot openings CAPACITY =	2050	lbs	OK
Use CS16 strap	1325	lbs	OK

Holddown Requirements

See Shear Wall Design Tabs

	Dimensions (in.)				Fasten	ers (in.)	Allowable Uplift Loads						
Model No.			Stud	Plate			DF	/SP	SP	F/HF	Cod		
	w	L	Stuu	Width	Stud1	Plate	Side 8 (160)	Center 9 (160)	Side 8 (160)	Center 9 (160)	Ref		
SP1	31/2	51/16	2x	_	(6) 0.148 x 3	(4) 0.148 x 3	555	555	535	535			
SP2	31/2	6%	2x	_	(6) 0.148 x 3	(6) 0.148 x 3	1,010	1,010	605	605	1		
SP4	3%6	71/4	2x	4x	(6) 0.148 x 11/2	_	415	825	355	710	1		
SP6	5%	73/4	2x	6x	(6) 0.148 x 11/2	_	415	825	355	710	1		
SP8	75/16	8%6	2x	8x	(6) 0.148 x 11/2	_	415	825	355	710	1		
SPH4 3%6 8%4	20/	8¾	8¾	8¾	2x	4x	(10) 0.148 x 1½	_	520	1,040	450	895	1
	3716				074	074	074	ZX	48	(12) 0.148 x 1 1/2	_	640	1,280
SPH6 5%6 91/4	5%6	91/4	01/	2x	6x	(10) 0.148 x 1½	_	520	1,040	450	895	1	
SPIIO	3716	974	2X	ΘX	(12) 0.148 x 1 1/2	_	640	1,280	550	1,100	IB(
SPH8 7%6 8%	034	2x	8x	(10) 0.148 x 1½	_	520	1,040	450	895	1 ''',			
	1 716	078	078	078 ZA	OX	(12) 0.148 x 1 1/2	_	640	1,280	550	1,100	1	
RSP4 (1)	21/8	41/2	2x	_	(4) 0.131 x 11/2	(4) 0.131 x 1 ½	245	245	285	285	1		
RSP4 (2)	21/8	41/2	2x	_	(4) 0.131 x 11/2	(4) 0.131 x 1 ½	390	390	370	370	1		
0000	417	0.4	0	_	(6) 0.148 x 11/2	_	_	550	_	475	1		
CS20	1 5/4	11/4 24	24	24	24 2x	_	(10) 0.148 x 1½	_	_	915	_	790	1
0040	11/4	26	2x	_	(12) 0.148 x 1 ½	_	_	1,135	_	980	1		
CS16	1.74	Zb	ZX.	_	(14) 0.148 x 11/2	_	_	1,325	_	1,140	1		

CS16 STUD PLATE TIES

Headers

Headers		
Per WFCM three 2" x 8" headers can span	6.82	ft
Dist from top plate to header max =	4.095	ft
Dist from sill plate to bottom of window =	3	ft
$_{\mathrm{X}} =$	4.095	
wall height h =	11.42	ft
x/h =	0.358581436	
Number of full head studs required for 6 foot	3	
Number of full head study required for 3 foot	2.	

Blocking to Stud

Withdrawl C & C pressure =	-169.2 psf
Trib =	4 sf
Withdrawl Pressure =	-676.9933361
Try 3 connectors each end	
Connector Applied Shear =	-112.8322227
10d box Z =	93 lbs
Cd =	1.6
Ctn =	0.83
Z' =	123.504 lbs O

Sill Plate Out of Plane Bending/Shear Design

Sill Plate Out of Plane Bending/Shear Design			
Sill plate trib =	21	psf	
C & C Pressure	75.2	psf	
Trib =	3.5	sf	
Wapp =	263.13	lb/ft	
Mapp (6' window) =	1184.085	lb*ft	
S (2) 2 x 6=	15.125	in^3	
App Stress =	939.4393388	psi	
Cd =	1.6		
Fb=	775	psi	
F'b =	1240	psi	
Vapp =	789.39	lbs	
$f_V =$	47.84181818	psi	
F'v =	216		
Q =	12.375	in^3	
I =	415.9375	in^4	
Shear Flow =	281.8318017	lb/ft	
Z 10d box =	93	lbs	
Z' 10d box =	148.8	lbs	
Req Spacing =	6.335693806	in	Say 6"

Ok

OK

Sill Plate Out of Plane Bending/Shear Design

SIII Plate Out of	riane benu	mg/Snear
Sill plate trib =	10.5	psf
C & C Pressure	101.5	psf
Trib =	3.5	sf
Wapp =	355.32	lb/ft
Mapp (6' window)	399.735	lb*ft
S 2 x 6=	7.5625	in^3
App Stress =	634.2902	psi
Cd =	1.6	
Fb=	775	psi
F'b =	1240	psi
Vapp =	532.98	lbs
fv =	32.30182	psi
F'v =	216	psi
· —		

OK

Stud Plate Ties (cont.)

These products are available with additional corrosion protection. For more information, see p. 15.

Model No.		nsions in.)		Fasteners (in.)		Allov	vable Uplift L (160)	oads											
	w	L	Studs	Double	Single	Double Top Plate		igle Plate	Code Ref.										
	"	-		Top Plate Sill Plate		DF/SP/SPF	DF/SP	SPF/HF											
			(4) 0.148 x 11/2	(3) 0.148 x 1 1/2	_	330	_	_											
SSP 136	134 014	61%	(4) U.146 X 172	_	(1) 0.148 x 1 1/2	_	395	310]										
331	178	0.716	(0.04400	(3) 0.148 x 3	_	410	_	_											
				(4) 0.148 x 3	_	(1) 0.148 x 3	_	430	400	IBC,									
		2¾ 61%	2% 61%	0.11	C	0.11	0.11	0.11	(8) 0.148 x 1 ½	(6) 0.148 x 1 1/2	_	730	_	_	FL, L				
DSP	024								0.44						0.114	0.111		(6) U.148 X 1 ½	_
DSF	(6) 0.148 x 3			_	780	_	_	ĺ											
			(8) 0.148 x 3	_	(2) 0.148 x 3	_	780	565											
			(6) 0.148 x 1 1/2	_	(3) 0.148 x 1 1/2	_	4655	400											
TSP	11/2	71/B	/// 0.440 41/	(6) 0.148 x 1 1/2		7554			FL										
			(9) 0.148 x 1 1/2	(6) 0.148 x 3	_	1,0154		_	1										

- 1. See pp. 260-261 for Straps and Ties General Notes.
 2. When cross-grain bending or cross-grain tension cannot be avoided in the members, mechanical reinforcement to resist such forces shall be considered by the Designer.
 3. Allowable loads for DSP installed to a rim board are 620 lb. (DF/SP) and 515 lb. (SPF/HF).
 4. Noted values apply only to DF/SP members. For SPF values, multiply by 0.86.

TSP STUD PLATE TIES

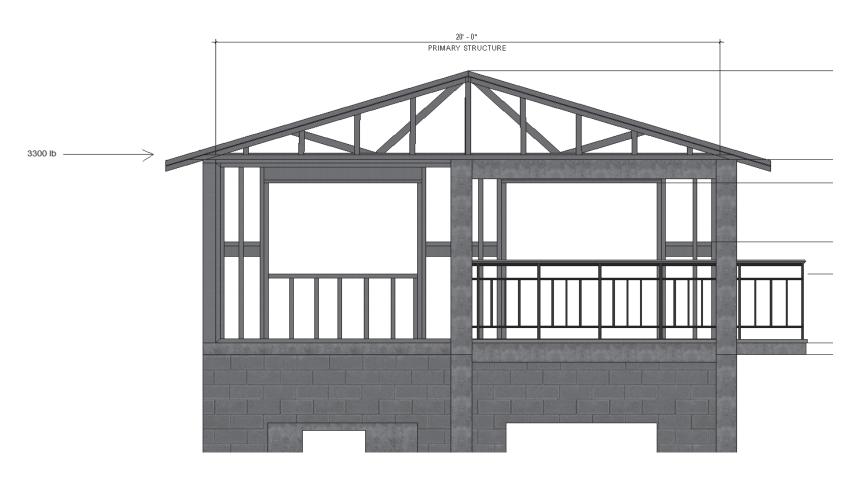
SS	MSTA24		1 1/4	24	(18) 0.148 x 2½	1,640	1,460	
25	MSTA30		1 1/4	30	(22) 0.148 x 2½	2,050	1,825	
SS	MSTA36		1 1/4	36	(26) 0.148 x 2½	2,050	2,050	
25	MSTA49		1 1/4	49	(26) 0.148 x 2½	2,020	2,020	FL, LA
	ST9	16	1 1/4	9	(8) 0.162 x 2½	885	765	
	ST12		1 1/4	11%	(10) 0.162 x 2½	1,105	955	IDC EL LA
	ST18		1 1/4	173⁄4	(14) 0.162 x 2½	1,420	1,335	IBC, FL, LA
	ST22		1 1/4	21%	(18) 0.162 x 2½	1,420	1,420	
ı	LIDOO		101	^	(0) 0 4 4 0 0 4 7	005	500	

MSTA 30 STRAP CAPACITY

Table 3.22A1 Laterally Unsupported (Dropped) Header Spans for Exterior Loadbearing Walls

Dropped Exterior

(Supporting a Roof and Ceiling)


Dead Load Assumptions: Roof/Ceiling Assembly = 20 psf, L/Δ_{LL} =240

	ı	Ro	of Live Lo	oad				Grou	nd Snow	Load			
	1		20 psf			30 psf			50 psf			70 psf	
	1					E	Building \	Width (ft)				
	1	12	24	36	12	24	36	12	24	36	12	24	36
Headers Supporting	Size		M	laximum	Header/	/Girder S	pans (ft-	in.) for C	ommon	Lumber	Species ^{1,}	3,4	
Roof and	1-2x6	4 - 4	3 - 4	2-9	3 - 11	3 - 0	2 - 7	3 - 4	2 - 7	2 - 2	3-0	2 - 4	2 - 0
Ceiling	1-2x8	5 - 3	4 - 1	3 - 6	4 - 10	3 - 9	3 - 3	4 - 2	3 - 3	2 - 9	3 - 9	2 - 11	2 - 6
	1-2x10	6 - 0	4 - 9	4 - 0	5 - 7	4 - 5	3 - 9	4 - 10	3 - 10	3 - 3	4 - 4	3 - 5	2 - 11
	1-2x12	6 - 6	5 - 3	4 - 7	6 - 2	5-0	4 - 4	5 - 5	4 - 5	3-9	4 - 11	4 - 0	3 - 4
	2-2x4	4 - 4	3 - 3	2-9	3 - 11	3 - 0	2-7	3 - 4	2 - 7	2-2	3-0	2 - 4	1 - 11
-	2-2x6	6 - 2	4 - 10	4 - 1	5-8	4 - 5	3 - 9	4 - 11	3 - 10	3 - 3	4 - 5	3 - 5	2 - 11
	2-2x8	7 - 2	5 - 9	4 - 11	6 - 9	5 - 5	4 - 8	5 - 11	4 - 8	4 - 0	5 - 4	4 - 3	3 - 7
	2-2x10	7 - 10	6 - 4	5 - 6	7 - 6	6 - 1	5 - 3	6 - 7	5 - 4	4 - 8	6 - 0	4 - 10	4 - 2
	2-2x12	8-5	6 - 10	6 - 0	8 - 1	6 - 7	5 - 10	7 - 2	5 - 11	5 - 2	6 - 6	5 - 5	4 - 9
	3-2x8	8-5	6 - 10	5 - 11	8-0	6 - 6	5 - 7	7 - 1	5-8	4 - 11	6-5	5 - 2	4-5
	3-2x10	9 - 2	7 - 5	6 - 6	8-9	7 - 2	6-3	7-9	6 - 4	5 - 6	7 - 1	5 - 9	5-0
	3-2x12	9 - 9	8 - 0	7-0	9 - 4	7-8	6-9	8 - 4	6 - 10	6 - 1	7-8	6-3	5 - 7
	4-2x8	9 - 4	7 - 7	6 - 8	8 - 11	7 - 3	6 - 4	7 - 11	6 - 5	5 - 7	7 - 2	5 - 10	5 - 0
	4-2x10	10 - 2	8 - 3	7 - 3	9 - 8	8 - 0	7 - 0	8 - 8	7 - 1	6 - 3	7 - 11	6 - 6	5 - 8
	4-2x12	10 - 10	8 - 10	7 - 9	10 - 4	8 - 7	7 - 6	9 - 3	7 - 8	6 - 9	8 - 6	7 - 0	6 - 2

MAXIMUM HEADER SPANS

PR Prescriptive Homes Calculations

SHEET NO.	
DATE	2/6/20
DATE	2/6/20
	DATE

USE segmented method

DESIGN WITH ONE OPENING EXCLUDE PANEL ADJACENT TO DOOR

Shear Wall Design 20' Wall with door


Shear Wall Shear =	3300	lb	
Using preforated method			\neg
L1 =	2.58		
L2 =	3.50		
L3 =	2.75		
worst case h/L ratio =	3.10	<3.5	OK
Ltot =	21.00		
% Full Ht. =	0.29		
$C_0 =$	0.41		
V/Co =	8048.034		
panel shear =	911.0982		
nominal panel shear =	1822.196		
10d nails at 3" with 3" blocking 15/32" struct 1 OSB =	1860	plf	OK*
T/Co =	3065.918		
T/Co LRFD =	5109.863		
USE HDU5 holddown capacity =	5646	lb	
5/8" DIA. CAP. LRFD 4.5" embed=	5110	lb	OK
NEED 2 STUDS AT EACH HOLDDOWN (NEED DET	AIL)		
Required Shear Wall Sill Plate Anchorage Force =	911.0982	lb/ft	
MASA Anchor at 1'-0" on center =	1475	lb	OK

OK

SHEAR CAPACITY ADJUSTMENT FACTOR

Table 4.3.3.5 Shear Capacity Adjustment Factor, Co Maximum Opening Height 1 Wall Height, h h/3 h/2 2h/3 5h/6 2'-8" 4'-0" 5'-4" 8'-0" 10'-0" Percent Full-Height Sheathing Effective Shear Capacity Ratio 0.69 0.71 0.74 0.77 0.80 0.83 0.87 0.91 0.95 1.00 0.53 0.56 0.59 0.63 0.67 0.71 0.77 0.83 0.91 1.00 0.36 0.38 0.42 0.45 0.50 0.56 0.63 0.71 0.83 1.00 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

^{*} Provided sheathing thickness is greater than maximum thickness provided by NDS table therefore actual capacity will be greater than what is shown

20' ShearWallWithTwoWindows

Shear Wall Design 20' Wall with door

Shear Wall Design 20' Wall with door			
Shear Wall Shear =	3300	lb	
Using preforated method			
L1 =	2.75		
L2 =	5.82		
L3 =	3.33		
worst case h/L ratio =	2.91	<3.5	OK
Ltot =	21.00		
% Full Ht. =	0.41		
Co =	0.77		
$V/C_0 =$	4285.317		
panel shear =	360.1107		
nominal panel shear =	720.2213		
10d nails at 3" with 3" blocking 15/32" struct 1 OSB =	1860	plf	OK*
Applied Tension T/Co =	1632.502	lb	
Applied Tension T/Co LRFD =	2720.836	lb	
USE HDU5 holddown capacity =	5646	lb	OK
5/8" DIA. CAP. LRFD 4.5" embed=	5110	lb	OK
NEED 2 STUDS AT EACH HOLDDOWN			
Required Shear Wall Sill Plate Anchorage Force =	360.1107	lb/ft	
MASA Anchor at 1'-0" on center =	1475	lb	OK

^{*} Provided sheathing thickness is greater than maximum thickness provided by NDS table therefore actual capacity will be greater than what is shown

Wall Height, h		Maxi	mum Opening He	ight 1		
wali Height, n	h/3	h/2	2h/3	5h/6	h	
8' Wall	2'-8"	4'-0"	5'-4"	6'-8"	8'-0"	
10' Wall	3'-4"	5'-0"	6'-8"	8'-4"	10'-0"	
Percent Full-Height Sheathing ²		Effecti	ve Shear Capacit	y Ratio	•	
10%	1.00	0.69	0.53	0.43	0.36	
20%	1.00	0.71	0.56	0.45	0.38	
30%	1.00	0.74	0.59	0.49	0.42	
40%	1.00	0.77	0.63	0.53	0.45	
50%	1.00	0.80	0.67	0.57	0.50	
60%	1.00	0.83	0.71	0.63	0.56	
70%	1.00	0.87	0.77	0.69	0.63	
80%	1.00	0.91	0.83	0.77	0.71	
90%	1.00	0.95	0.91	0.87	0.83	

SHEAR CAPACITY ADJUSTMENT FACTOR

Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,3,6,7}

0						Wo	od-ba	ised F	Panel	s^4										
ppvriaht			•							-	A								В	
0		Minimum	Minimun Fastener								SMIC	: <i>(</i> :	- 1				Pai		ND e Faste	ner
American	Sheathing	Nominal Panel	Penetration	Fastener Type & Size				Pa	nei Eag	je Faste	ener Sp	acing (i	n.)					_	ng (in.)	
FIC	Material	Thickness	in Framing Member or	Type & Size		6			4			3			2		6	4	3	2
an		(in.)	Blocking		V ₈	0	ò _a	V ₈	0	ôa .	V ₈	G	a	V ₈	G) _a	V _w	V _w	V _w	V _w
V _o			(in.)		(plf)	(kips	s/in.)	(plf)	(kips	s/in.)	(plf)	(kips	s/in.)	(plf)	(kips	s/in.)	(plf)	(plf)	(plf)	(plf)
Vood Co				Nail (common or galvanized box)		osb	PLY		osb	PLY		osb	PLY		osb	PLY				
	Wood Structural	5/16	1-1/4	6d	400	13	10	600	18	13	780	23	16	1020	35	22	560	840	1090	1430
₫.	Panels -	3/82			460	19	14	720	24	17	920	30	20	1220	43	24	645	1010	1290	1710
Do	Structural I4,5	7/16 ²	1-3/8	8d	510	16	13	790	21	16	1010	27	19	1340	40	24	715	1105	1415	1875
8		15/32			560	14	11	860	18	14	1100	24	17	1460	37	23	785	1205	1540	2045
nloa		15/32	1-1/2	10d	680	22	16	1020	29	20	1330	36	22	1740	51	28	950	1430	1860	2435
õ		5/16			360	13 <u>N</u>	OMIN.	I 540 ALSHI	EAR V	VALL (I 700 CAPAC	CITIES	14	ann	37	18	505	755	980	1260

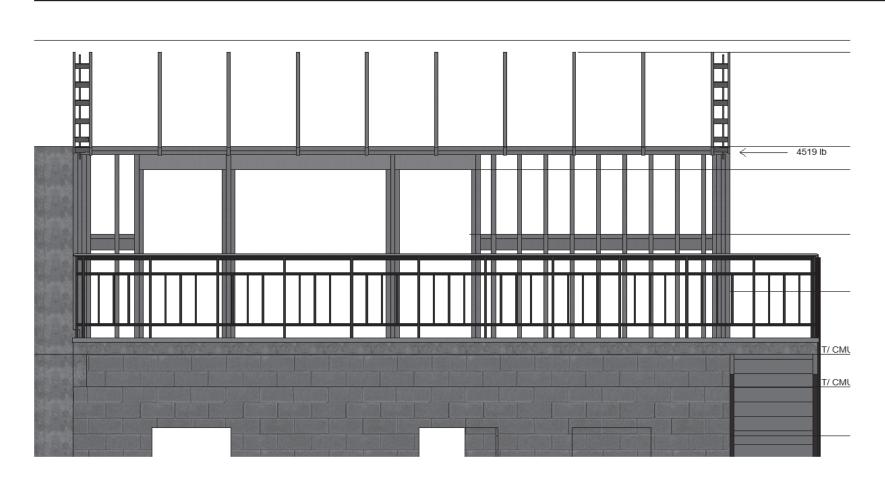
Model			Di	mensio (in.)	ns			Fasteners (in.)	Minimum Wood	All	owable Tensio (160)	n Loads
Model No.	Ga.	w	Н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)
								(6) SD #9 x 11/2		840	840	0.17
DTT1Z	14	11/2	71/8	17/16	3/4	3/16	3/8	(6) 0.148 x 1½	1½ x 5½	910	640	0.167
								(8) 0.148 x 1½		910	850	0.167
DTT07								(8) 1/4 x 1 1/2 SDS	1½ x 3½	1,825	1,800	0.105
DTT2Z	14	31/4	615/16	1%	13/16	3/16	1/2	(8) 1/4 x 1 1/2 SDS	3 x 3½	2,145	1,835	0.128
DTT2Z-SDS2.5								(8) 1/4 x 21/2 SDS	3 x 3½	2,145	2,105	0.128
HDU2-SDS2.5	14	3	811/16	31/4	1546	13/8	5/8	(6) 1/4 x 21/2 SDS	3 x 3½	3,075	2,215	0.088
HDU4-SDS2.5	14	3	1015/16	31/4	1546	13/8	5/8	(10) 1/4 x 21/2 SDS	3 x 3½	4,565	3,285	0.114
HDU5-SDS2.5	14	3	13¾6	31/4	15/16	13/8	5/8	(14) 1/4 x 2 1/2 SDS	3 x 3½	5,645	4,340	0.115

HDU5 HOLDDOWN ALLOWABLE CAPACITIES

Simpson Strong-Tie® Wood Construction Connectors

MASA/MASAP

SIMPSON StrongTie


Mudsill Anchors (cont.)

These products are available with additional corrosion protection. For more information, see p. 15.

			Fastene	ers (in.)					J	Allowab	le Loads	3					
	Model	Sill Size					Uncra	acked					Crac	ked			Code
	No.	SIII SIZE	Sides	Тор	Wind a	nd SDC	A&B5,6	S	DC C-F	36	Wind a	nd SDC	A&B ^{5,€}	S	DC C-F	6	Ref.
					Uplift	Fı	F ₂	Uplift	Fı	F ₂	Uplift	F ₁	F ₂	Uplift	H	F ₂	
				Standard	d Installation – Attached to DF/SP Sill Plate												
_	MASA or MASAP	2x4, x6, x8, x10	(3) 0.148 x 1½	(6) 0.148 x 1 ½	920	1,475	1,095	745	1,235	1,045	750	1,475	875	660	1,235	765	IBC,
-	MASA OF MASAP	3x4, 3x6	(5) 0.148 x 11/2	(4) 0.148 x 11/2	630	1,165	725	550	1,020	725	475	1,165	725	415	1,020	640	FL, LA
				One-Lea-U	p Instal	lation –	Attache	ed to DF	/SP Sill	Plate							

MASA MUDSILL ANCHOR CAPACITIES

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

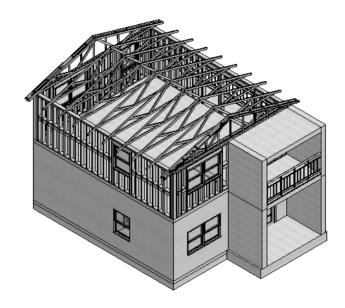


DESIGN WITH ONE OPENING EXCLUDE PANEL ADJACENT TO DOOR THIS DESIGN WILL WORK FOR MODULE WALL WITH 12' OPNG WITH SHORTER PANELS AND LESS LOAD

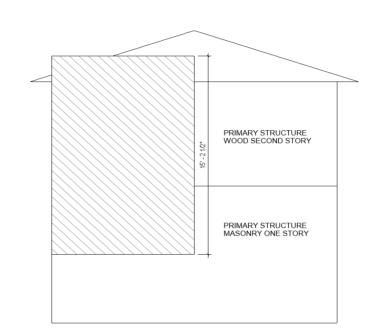
	THIS DESIGN WI	LL WOR
Shear Wall Design 24' Wall with large opening and window		
Shear Wall total shear =	4519 lb	
Using preforated method		
L1 =	3.82	
L2 =	3.00	
L3 =	2.75	
worst case h/L ratio =	2.91 < 3.5	OK
Ltot =	24.00	
% Full Ht. =	0.28	
$C_0 =$	0.73	
$V/C_0 =$	6190.225	
panel shear =	646.8365	
nominal panel shear =	1293.673	
10d nails at 3" with 3" blocking 15/32" struct 1 OSB =	1860 plf	OK*
T/Co =	2063.408	
T/Co LRFD =	3439.014	
USE HDU5 holddown capacity =	5646 lb	
5/8" DIA. CAP. LRFD 4.5" embed=	5110 lb	
NEED 2 STUDS AT EACH HOLDDOWN		
Required Shear Wall Sill Plate Anchorage Force =	646.8365 lb/ft	
MASA Anchor at 1'-0" on center =	1475 lb	OK

Wall Haight b		Maximum Opening Height 1							
Wall Height, h	h/3	h/2	2h/3	5h/6	h				
8' Wall	2'-8"	4'-0"	5'-4"	6'-8"	8'-0"				
10' Wall	3'-4"	5'-0"	6'-8"	8'-4"	10'-0'				
Percent Full-Height Sheathing ²	Effective Shear Capacity Ratio								
10% 20% 30% 40% 50% 60% 70% 80%	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.69 0.71 0.74 0.77 0.80 0.83 0.87 0.91	0.53 0.56 0.59 0.63 0.67 0.71 0.77 0.83 0.91	0.43 0.45 0.49 0.53 0.57 0.63 0.69 0.77 0.87	0.36 0.38 0.42 0.45 0.50 0.56 0.63 0.71 0.83				

^{*} Provided sheathing thickness is greater than maximum thickness provided by NDS table therefore actual capacity will be greater than what is shown


BY INSPECTION ABOVE DESIGN WILL WORK FOR THIS WALL

PR Prescriptive Homes Calculations

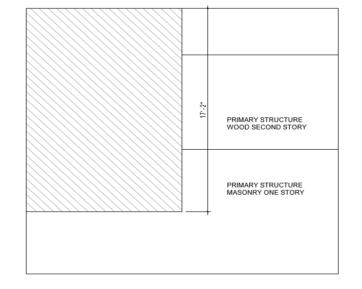

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

ASD WIND PRESSURES								
Windward Wall Pressures at "z" (psf) Combined WW + L'					WW + LW			
			Windward Wall			Normal	Parallel	
	Z	Kz	Kzt	qzGCp	w/+qiGCpi	w/-qhGCpi	to Ridge	to Ridge
	0 to 15'	1.0	1.0	55.0	23.8	42.3	54.8	53.1
h=	20	1.0	1.0	57.9	25.5	43.9	56.5	54.8
ridge =	22.4	1.1	1.0	59.0	26.2	44.6	57.2	55.5

Note: Modules not included because they are acting independent of the primary structure and are not hard attached.

Roof Diaphragm Load Primary Structure Wind Parallel to Ridge:


B =	24	ft
Wall Ht. CMU =	18.50	ft
Roof Ht. Above 1st story=	11.90	ft
Roof Ht. Avg =	15.20	ft
Diaphragm Trib Area/ft =	15.20	Ft^2/ft
Diaphragm Load/ft Main =	843	lb/ft
Diaphragm Shear/Ft =	351	lb/ft
Wall Shear 24' Wall Primary	8429	lb
Diaphragm Moment =	60692	lb*ft
Diaphragm Chord T/C =	3035	lbs
Diaphragm Chord T/C per ft =	126	lbs/ft

TRIBUTARY FOR SHEAR WALL WIND PARALLEL TO RIDGE

Note: Diaphragm transfers load to two adjacent shear walls

Doesn't control

Roof Diaphragm Load Primary St	ructure Wind Perpe	ndicular t	o Ridge:
B =	20	ft	o/o
Wall Ht. CMU =	10.50	ft	
Roof Ht. Above 1nd Story =	11.90	ft	
Roof Ht. Avg =	11.90	ft	
Diaphragm Trib Area/ft =	17.15	Ft^2/ft	
Diaphragm Load/ft =	981	lb/ft	
Diaphragm Total Shear/ft =	490	lb/ft	
Wall Shear 20' Wall =	9810	lbs	ASD
Diaphragm Moment =	49050	lb*ft	
Diaphragm Chord T/C =	2044	lbs	
Diaphragm Chord T/C per ft =	102	lbs/ft	Doesn't control

Roof Diaphragm Load Primary Module for 10' Shear Wall:

B =	20	ft	o/o
Wall Ht. CMU =	10.50	ft	
Roof Ht. Above 1nd Story =	10.50	ft	
Roof Ht. Avg =	10.50	ft	
Diaphragm Trib Area/ft =	5.25	Ft^2/ft	
Diaphragm Load/ft =	300	lb/ft	
Diaphragm Total Shear/ft =	300	lb/ft	
Wall Shear 10' Wall =	3003	lbs	ASD
Diaphragm Moment =	15015	lb*ft	
Diaphragm Chord T/C =	1502	lbs	
Diaphragm Chord T/C per ft =	150	lbs/ft	Doesn't control

TRIBUTARY FOR SHEAR WALL WIND PERPENDICULAR TO RIDGE

B =	10	ft	o/
Wall Ht. CMU =	10.50	ft	
Roof Ht. Above 1nd Story =	10.50	ft	
Roof Ht. Avg =	10.50	ft	
Diaphragm Trib Area/ft =	5.25	Ft^2/ft	
D' 1 T 1/0	200	11 /0	

Roof Diaphragm Load Primary Module for 20' Shear Wall:

Roof Ht. Avg =	10.50	ft	
Diaphragm Trib Area/ft =	5.25	Ft^2/ft	
Diaphragm Load/ft =	300	lb/ft	
Diaphragm Total Shear/ft =	75	lb/ft	
Wall Shear 20' Wall =	1502	lbs	ASD
Diaphragm Moment =	3754	lb*ft	
Diaphragm Chord T/C =	375	lbs	
Diaphragm Chord T/C per ft =	38	lbs/ft	Doesn't control

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

Wall	Design	C and	1 C Z	Lone 4
------	--------	-------	-------	--------

Wan Design C and C Zone 4			
Assume No. 5 at 24" O.C.			
Effective Wind Area =	36.75		
Wind Load =	60.6	lb/ft	ASD
Vert Load =	1150	lb	D+L
Self Wt Mid wall =	195	lb	Self
As pro =	0.15	sq in	_
d =	2.8125		
Rho =	0.004444		
n =	21.5		
Rho x n =	0.095556		
k =	0.351928		
j =	0.882691	in	
M =	909	lb*ft	
$f_S =$	29292.26	psi	< 32,000 psi OK
fb =	739.8538	psi	< 1900*0.45 = 855 psi OK
Equivalent Wall Thickness =			4 in
fa =	28.02083		28.02083 psi
fa+fb =	767.8747	psi	< 855 psi OK

Development Length

Wall is considered pinned/pinned but is also a special shear wall

As min special shear wall =

0.2in^2/24"=0.1in^2 per foot

As provided =

0.225 in^2 per foot OK

W1.7 bed joint reinforcement not spaced at more than 16" on center (horiz)

ACI 530 7.4.3.1

ASCE 7

Anchor bolts embedded in grout have to resist 2 x seismic load (might not control)

Wall Design C and C Zone 5

Assume No. 5 at 16" O.	C. at 3' out f	rom edge
Wind Load =	75.6	lb/ft
Vert Load =	1150	lb
Self Wt Mid wall =	195	lb
As pro =	0.225	sq in
d =	2.8125	
Rho =	0.006667	
n =	21.5	
Rho x n =	0.143333	
k =	0.410933	
j =	0.863022	in
M =	1134	lb*ft
fs =	24917.08	psi
fb =	808.472	psi
Equivalent Wall Thickne	ess =	
fa =	28.02083	
fa+fb =	836.4928	psi
NOTE: Many walls will		
equivalent of Required s		
due to shear wall panel r	eq.	

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

WALL LOADS

D =	750	lb/ft	
L =		lb/ft	
Self=	64	psf	Fully Grouted
	39	psf	At 32" O.C.
Wind =	45	psf	windward
	-31.02886	psf	leeward
Wind in plane =	8429	lbs	
Wind out of plane =	45	psf	\dashv

1 =	3	ft		
P =	2.586	kips		
Wind Segment =	2.494163	kips		
M =	314.2645	kip*in		
1 =	36	in		
t =	5.625	in		
fa =	0.01277	ksi		
r =	1.62	in	Fully Gro	outed
h/r =	77.77778			
Fa =	0.259259	psi		
Try no 7 at end of wall				
d =	28	in		
b =	5.625	in		
$A_S =$	0.6	in^2	2 no 5	
p =	0.00381			
n =	21.5			
pn =	0.081905			
k =	0.331033			
j =	0.889656			
fb =	483.9417	psi		
Fb=	855	psi	>	483.9417 psi OK
fs =	21026.36	psi		
$F_S =$	32000	psi	>	21026.36 psi OK
M/Vd =	3.50			
fv =	16.41905	psi		
Fv =	21.79	psi	>	16.41905 psi OK
Fv =	77.46	psi	Doesn't (Control

Relative Rigidities of Piers

					Relative Rigidit	ty	Percentage of	
Pier No.	Heigh	t Leng	th h/l		Table ASD-89		Lateral Force	V
	1	10.5	3	3.5		0.187	0.295886076	2494.163
2	2	10.5	4	2.625		0.383	0.606012658	5108.366
	3	10.5	2	5.25		0.062	0.098101266	826.9417
				•		0.632		

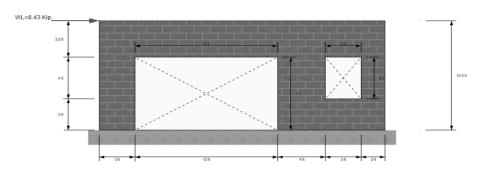


TABLE 11.2 Relative Rigidities of Piers – West Wall

Pier No.	Height h (ft)	Length <i>l</i> (ft)	h/l Ratio (all piers fixed)	Relative Rigidity Table ASD-89 Fixed Piers ²	Percentage Lateral Force to Each Pier	Force V to each Pier (pounds)	Unit Shear f_v , in each pier = $\frac{V}{tl}$ (psi)
1	10	3	3.33	0.213	1.5	353	1.1
2	5	2	2.50	0.75	5.0	1,172	5.5
3	5	18	0.28	11.602	81.2	19,050	9.9
4	4	3	1.33	1.577	11.0	2,580	8.0
5	7	2	3.50	0.187	1.3	306	1.4

Wall Segment 2

4	ft		
3.336	kips		
5.108366	kips		
643.6541	kip*in		
48	in		
5.625	in		
0.012356	ksi		
1.62	in	Fully G	frouted
77.77778			
0.259259	psi		
40	in		
5.625	in		
0.6	in^2	2 no 5	
0.002667			
21.5			
0.057333			
0.286111			
0.90463			
552.6308	psi		
855	psi	>	552.6308 psi OK
		>	29646.29 psi OK
	_		-
14.82667	psi		
		>	14.82667 psi OK
		Doesn't	t Control
	3.336 5.108366 643.6541 48 5.625 0.012356 1.62 77.77778 0.259259 40 5.625 0.06 0.002667 21.5 0.057333 0.286111 0.90463 552.6308 855 29646.29 32000 3.50 14.82667 21.79	4 ft 3.336 kips 5.108366 kips 643.6541 kip*in 48 in 5.625 in 0.012356 ksi 1.62 in 77.77778 0.259259 psi 40 in 5.625 in 0.6 in^2 0.002667 21.5 0.057333 0.286111 0.90463 552.6308 psi 855 psi 29646.29 psi 32000 psi 3.50 14.82667 psi 21.79 psi 77.46 psi	3.336 kips 5.108366 kips 643.6541 kip*in 48 in 5.625 in 0.012356 ksi 1.62 in 77.77778 0.259259 psi 40 in 5.625 in 0.6 in^2 2 no 5 0.002667 21.5 0.057333 0.286111 0.90463 552.6308 psi 855 psi 29646.29 psi 32000 psi 3.50 14.82667 psi 21.79 psi

 $[\]Sigma = \overline{14.329} \qquad \overline{100\%} \qquad \Sigma = \overline{23,460} \text{ pounds}^{1}$ 1. It would be conservative and quite usual to use the base shear, V = 26,700 lbs as the force on the wall and distribute this amount to all piers. The approach here is a little more detailed.

Wall Segment 3

1=	2	ft	Ī
P =	1.836		†
Wind Segment =	0.826942		1
M =	104.1947		
1=	24	in	
t =	5.625	in	Ī
fa =	0.0136	ksi	
$\mathbf{r} =$	1.62	in	Fully Grouted
h/r =	77.77778		
Fa =	0.259259	psi	
Try no 7 at end of wall			
d =	16	in	
b =	5.625	in	
$A_S =$	0.6	in^2	2 no 5
p =	0.006667		
n =	21.5		
pn =	0.143333		
k =	0.410933		
j =	0.863022		
fb =	408.0562	psi	
Fb =	855	psi	> 408.0562 psi OK
fs =	12576.28	psi	
$F_S =$	32000	psi	> 12576.28 psi OK
M/Vd =	3.50		
fv =	20.4	psi	
$F_V =$	21.79	psi	> 20.4 psi OK
Fv =	77.46	psi	Doesn't Control

Maximum bar size for 6" block

1/8" member thickness = 0.703125 in one quarter of cell = 1 in

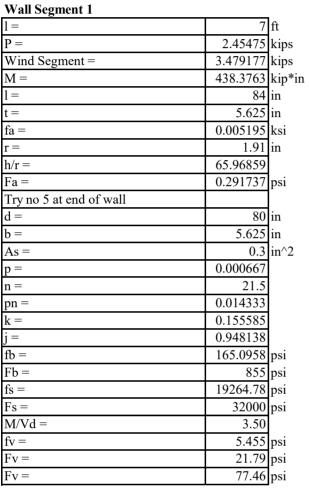
No. 9 bar

PROVIDE 2 NO 5 AT ENDS OF EACH SEGMENT

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE 2/6/2	0
CHECKED BY MH	DATE 2/6/2	0


WALL LOADS

D =	750	lb/ft	
	,,,,		
L =	400	lb/ft	
Self =	64	psf	Fully Grouted
	39	psf	At 32" O.C.
Wind =	45	psf	windward
	-31.02886	psf	leeward
Wind in plane =	8429	lbs	
W:1	45	C	\rightarrow
Wind out of plane =	43	psf	

Relative Rigidities of Piers

						Relative		
						Rigidity	Percentage	
						Table	of Lateral	
Pier No.	Heigh	ıt	Length	h/l		ASD-89	Force	V
	1	10.5		7	1.5	1.27	0.4127397	3479.177
	2	10.5		8	1.3125	1.62	0.5264868	4438.005
	3	10.5		3	3.5	0.187	0.0607735	512.2883
						3.077	•	

Partially Grouted

OK > fa

1 NO 5

165.0958 psi OK

19264.78 psi OK

5.455 psi OK

Wall Segment 2

Wall Segment 2		
1 =	8 ft	
P =	6.336 kips	
Wind Segment =	4.438005 kips	
M =	559.1887 kip*in	
1 =	96 in	
t =	5.625 in	
fa =	0.011733 ksi	
r =	1.91 in	Partially G
h/r =	65.96859	
Fa =	0.291737 psi	OK>fa
Try no 5 at end of wall		
d =	92 in	
b =	5.625 in	
$A_S =$	0.3 in^2	
p =	0.00058	
n =	21.5	
pn =	0.012464	
k =	0.145912	
j =	0.951363	
fb =	169.2205 psi	
Fb=	855 psi	>
fs =	21296.25 psi	
$F_S =$	32000 psi	>
M/Vd =	3.50	
fv =	12.24348 psi	
Fv =	21.79 psi	>
$F_V =$	77.46 psi	Doesn't Co

Grouted

Doesn't Control

169.2205 psi OK 21296.25 psi OK

12.24348 psi OK

ontrol

Wall Segment 2

1 =	3 ft		
P =	2.586 kips		
Wind Segment =	0.512288 kips		
M =	64.54832 kip*in		
1 =	36 in		
t =	5.625 in		
fa =	0.01277 ksi		
r =	1.91 in	Partially	Grouted
h/r =	65.96859		
Fa =	0.291737 psi	OK>fa	
Try no 5 at end of wall			
d =	32 in		
b =	5.625 in		
As =	0.3 in^2		
p =	0.001667		
n =	21.5		
pn =	0.035833		
k =	0.234261		
j =	0.921913		
fb =	103.7775 psi		
Fb=	855 psi	>	103.7775 psi OK
fs =	7293.294 psi		
$F_S =$	32000 psi	>	7293.294 psi OK
M/Vd =	3.50		
fv =	14.36667 psi		
$F_V =$	21.79 psi	>	14.36667 psi OK
$F_V =$	77.46 psi	Doesn't C	Control

Maximum bar size for 6" block

1/8" member thickness = 0.703125 in No. 6 bar one quarter of cell = 1 in

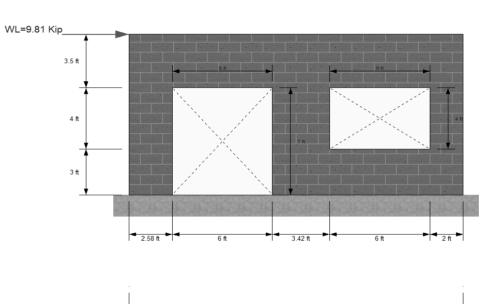
PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

WALL LOADS

D =	750 lb/	ft
2	720 107	10
L =	400 lb/	ft
Self =	64 ps	f
	39 psi	f
Wind =	45 psi	f
	-31.02886 ps	f
Wind in plane =	9810 lbs	S
Wind out of plane =	45 psi	f


Relative Rigidities of Piers

					Relative	Percentag	
					Rigidity	e of	
					Table	Lateral	
	Pier No.	Height	Length	h/l	ASD-89	Force	V
Fully Grouted	1	10.5	2.58	4.069767	0.125	0.323834	3176.794
At 32" O.C.	2	10.5	3.42	3.070175	0.199	0.515544	5057.456
windward	3	10.5	2	5.25	0.062	0.160622	1575.69
leeward					0.386	-	

Wall Segment 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wall Segment 1		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 =	2.58	ft
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P =	2.271	kips
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wind Segment =	3.176794	kips
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M =	400.276	kip*in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 =	30.96	in
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t =	5.625	in
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	fa =	0.01304	ksi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r =	1.62	in
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h/r =	77.77778	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fa =	0.259259	psi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Try 2 no 6 at end of wall		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d =	23	in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	b =	5.625	in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.88	in^2
$\begin{array}{c ccccc} pn = & & & & & & & \\ k = & & & & & & \\ j = & & & & & & \\ fb = & & & & & \\ Fb = & & & & & \\ Fs = & & & & & \\ Fs = & & & & & \\ M/Vd = & & & & \\ fv = & & & & & \\ Fv = & & & & & \\ & & & & & \\ \hline \end{array}$	$\mathbf{p} =$	0.006802	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	pn =	0.146242	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	k =	0.413999	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j =	0.862	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fb =	753.8839	psi
	Fb =	855	psi
M/Vd = 3.50 fv = 17.55362 psi Fv = 21.79 psi	fs =	22942.55	psi
fv = 17.55362 psi Fv = 21.79 psi	Fs =	32000	psi
Fv = 21.79 psi	M/Vd =	3.50	
		17.55362	psi
Fv = 77.46 psi	Fv=	21.79	psi
	Fv=	77.46	psi

Fully Grouted

Level 1 10.5 ft Level 0

> 753.8839 psi OK

22942.55 psi OK

17.55362 psi OK Doesn't Control

Wall Segment 2

Wall Segment 2		
1 =	3.42	ft
P =	2.901	kips
Wind Segment =	5.057456	kips
M =	637.2394	kip*in
1 =	48	in
t =	5.625	in
fa =	0.010744	ksi
r =	1.62	in
h/r =	77.77778	
Fa =	0.259259	psi
Try 2 no 6 at end of wall		
d =	33.04	in
b =	5.625	in
$A_S =$	0.88	in^2
$\mathbf{p} =$	0.004735	
n =	21.5	
pn =	0.101803	
k =	0.360765	
j =	0.879745	
fb =	653.9563	psi
Fb =	855	psi
fs =	24912.83	psi
$F_S =$	32000	psi
M/Vd =	3.50	
fv =	15.60936	psi
Fv =	21.79	psi
Fv=	77.46	psi

Fully Grouted

653.9563 psi OK

24912.83 psi OK

15.60936 psi OK

Doesn't Control

Wall	Segment	3
------	---------	---

2 ft		
1.836 kips		
1.57569 kips		
198.5369 kip*in		
24 in		
5.625 in		
0.0136 ksi		
1.62 in	Fully Grout	ed
77.77778		
0.259259 psi		
16 in		
5.625 in		
0.6 in^2		
0.006667		
21.5		
0.143333		
0.410933		
0.863022		
777.5275 psi		
855 psi	>	777.5275
23963.37 psi		
32000 psi	>	23963.37 psi OK
3.50		_
20.4 psi		
21.79 psi	>	20.4 psi OK
77.46 psi	Doesn't Cor	_
	1.57569 kips 198.5369 kip*in 24 in 5.625 in 0.0136 ksi 1.62 in 77.77778 0.259259 psi 16 in 5.625 in 0.66 in 21.5 0.143333 0.410933 0.863022 777.5275 psi 855 psi 23963.37 psi 32000 psi 3.50 20.4 psi 21.79 psi	1.57569 kips 198.5369 kip*in 24 in 5.625 in 0.0136 ksi 1.62 in 77.7778 0.259259 psi 16 in 5.625 in 0.06667 21.5 0.143333 0.410933 0.863022 777.5275 psi 855 psi 23963.37 psi 32000 psi 3.50 20.4 psi 21.79 psi > >

Maximum bar size for 6" block

1/8" member thickness = 0.703125 in No. 6 bar = 0.75 in

one quarter of cell = 1 in

No. 9 bar

PROVIDE 2 NO. 5/6 AT ENDS OF WALL SEGMENTS

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

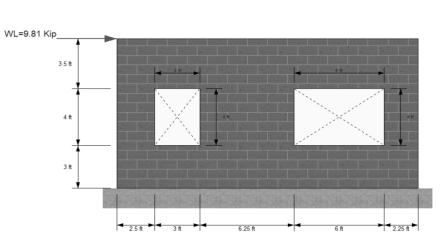
JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

WALL LOADS

D =	750 lb/ft
L =	400 lb/ft
Self =	64 psf
	39 psf
Wind =	45 psf
	-31.02886 psf
Wind in plane =	9810 lbs
Wind out of plane =	45 psf

Relative Rigidities of Piers

					Relative	Percentag	
					Rigidity	e of	
					Table	Lateral	
Pier No.	He	ight	Length	h/l	ASD-89	Force	V
	1	10.5	2.5	4.2	0.115	0.094031	922.4391
	2	10.5	6.25	1.68	1.022	0.83565	8197.676
	3	10.5	2.25	4.666667	0.086	0.070319	689.824
					1.223	'	


P = 2.079 Wind Segment = 0.9224 M = 116.22 I = 30 t = 5.6 fa = 0.0119	2.5 ft 275 kips 139 kips 273 kip*in 196 in 195 in
Wind Segment = 0.9224 M = 116.22 1 = 30 t = 5.6 fa = 0.0119 r = 1	kips 273 kip*in .96 in
$\begin{array}{ccc} M = & & 116.22 \\ 1 = & & 30 \\ t = & & 5.6 \\ fa = & & 0.0119 \\ r = & & 1 \\ \end{array}$	273 kip*in .96 in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.96 in
$\begin{array}{ccc} t = & & 5.6 \\ fa = & & 0.0119 \\ r = & & 1 \end{array}$	
fa = 0.0119 $r = 1$	525 in
r = 1	
	942 ksi
h/r = 77.777	.62 in
	78
Fa = 0.2592	259 psi
Try no 5 at end of wall	
d =	26 in
b = 5.6	525 in
As =	0.3 in^2
p = 0.0020)51
n = 2	1.5
pn = 0.0441	.03
k = 0.2561	48
j = 0.9146	517
fb = 260.93	91 psi
Fb =	355 psi
fs = 16291	.99 psi
Fs = 320	000 psi
	.50
fv = 14.220	
Fv = 21)51 psi
Fv = 77	051 psi .79 psi

Fully Grouted

Fully Grouted At 32" O.C.

windward

leeward

Level 1 Level 0

260.9391 psi OK

16291.99 psi OK >

14.22051 psi OK Doesn't Control

Wall Segment 2

Wall Segment 2			
1 =	6.25 ft		
P =	5.0235 kips		
Wind Segment =	8.197676 kips		
M =	1032.907 kip*ii	n	
1 =	75 in		
t =	5.625 in		
fa =	0.011908 ksi		
$\mathbf{r} =$	1.62 in	Fully C	Grouted
h/r =	77.77778		
Fa =	0.259259 psi		
Try no 7 at end of wall			
d =	71 in		
b =	5.625 in		
$A_S =$	0.6 in^2		
p =	0.001502		
n =	21.5		
pn =	0.0323		
$\mathbf{k} =$	0.223911		
j =	0.925363		
fb =	351.6128 psi		
Fb =	855 psi	>	351.
fs =	26202.31 psi		
$F_S =$	32000 psi	>	2620
M/Vd =	3.50		
fv =	12.5784 psi		
Fv=	21.79 psi	>	12.
$F_V =$	77.46 psi	Doesn'	t Control

1.6128 psi OK

202.31 psi OK

2.5784 psi OK

Wall Segment 3

1 =	2.25	ft		
P =	2.0235	kips		
Wind Segment =	0.689824	kips		
M =	86.91783	kip*in		
1 =	27	in		
t =	5.625			
fa =	0.013323			
r =	1.62	in	Fully Groute	ed
h/r =	77.77778			
Fa =	0.259259	psi		
Try no 7 at end of wall				
d =	23	in		
b =	5.625	in		
As =		in^2		
p =	0.004638			
n =	21.5			
pn =	0.09971			
k =	0.357851			
j =	0.880716			
fb =	185.3626			
Fb =	855		>	185.3626
fs =	7151.444			
$F_S =$	32000	psi	>	7151.444 psi OK
M/Vd =	3.50			
fv =	15.64058			
$\mathbf{F}\mathbf{v} =$	21.79		>	15.64058 psi OK
$F_V =$	77.46	psi	Doesn't Con	itrol

Maximum bar size for 6" block

1/8" member thickness = 0.703125 in one quarter of cell = 1 in

No. 9 bar

PR Prescriptive Homes Calculations

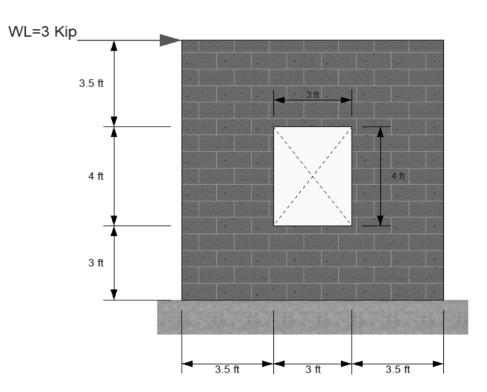
JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

WALL LOADS

D =	750 lb	/ G
D =	/30 10	/1ι
L =	400 lb	/ft
Self=	64 ps	\mathbf{f}
	39 ps	
Wind =	45 ps	\mathbf{f}
	-31.02886 ps	
Wind in plane =	3003 lb	S
Wind out of plane =	45 ps	\mathbf{f}

Relative Rigidities of Piers


					Relative	Percentag	
					Rigidity	e of	
					Table	Lateral	
Pier 1	No. He	eight Ler	ngth h/l		ASD-89	Force	V
	1	10.5	3.5	3	0.278	0.5	1501.521
	2	10.5	3.5	3	0.278	0.5	1501.521
				•	0.556	•	

Wall Segment 1/2		_
1 =	3.5	ft
P =	2.82975	kips
Wind Segment =	1.501521	kips
M =	189.1917	kip*in
1 =	42	in
t =	5.625	in
fa =	0.011978	ksi
r =	1.9	in
h/r =	66.31579	
Fa =	0.290859	psi
Try no 5 at end of wall		
d =	38	in
b =	5.625	in
$A_S =$	0.3	in^2
p =	0.001404	
n =	21.5	
pn =	0.030175	
k =	0.217335	
j =	0.927555	
fb =	231.0856	psi
Fb =	855	psi
fs =	17891.94	psi
$F_S =$	32000	psi
M/Vd =	3.50	
fv =	13.2386	
Fv =	21.79	psi
Fv =	77.46	psi

Partially Grouted

Fully Grouted At 32" O.C.

windward leeward

> 231.0856 psi OK

17891.94 psi OK >

13.2386 psi OK Doesn't Control

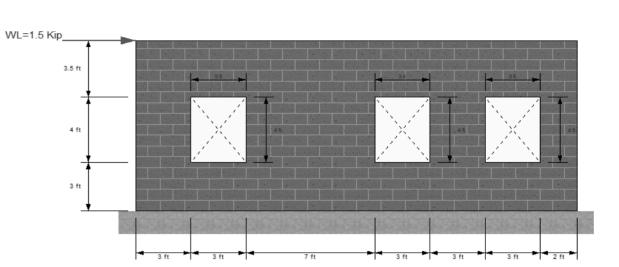
PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.		SHEET NO.	
CALCULATED BY	SW	DATE	2/6/20
CHECKED BY	MH	DATE	2/6/20

WALL LOADS

D =	750 lb/ft
L =	400 lb/ft
Self=	64 psf
	39 psf
Wind =	45 psf
	-31.02886 psf
Wind in plane =	3003 lbs
Wind out of plane =	45 psf


Relative Rigidities of Piers

					F	Relative	Percentag	
					F	Rigidity	e of	
					7	Γable	Lateral	
	Pier No.	Height	Length	h/l	A	ASD-89	Force	V
Fully Grouted	1	10.5		3	3.5	0.187	0.109613	329.1729
At 32" O.C.	2	10.5		7	1.5	1.27	0.744431	2235.559
windward	3	10.5		3	3.5	0.187	0.109613	329.1729
leeward	4	10.5		2	5.25	0.062	0.036342	109.1375
					_	1.706		

Wall Segment 1/3

Wall Segment 1/3		_
1 =	3	ft
P =	2.45475	kips
Wind Segment =	0.329173	kips
M =	41.47579	kip*in
1 =	36	in
t =	5.625	in
fa =	0.012122	ksi
r =	1.9	in
h/r =	66.31579	
Fa =	0.290859	psi
Try no 5 at end of wall		
d =	32	in
b =	5.625	in
As =	0.3	in^2
p =	0.001667	
n =	21.5	
pn =	0.035833	
k =	0.234261	
j =	0.921913	
fb =	66.68267	psi
Fb =	855	psi
$f_S =$	4686.336	psi
Fs =	32000	psi
M/Vd =	3.50	
fv =	13.6375	psi
Fv =	21.79	psi
Fv =	77.46	psi

Partiall Grouted

66.68267 psi OK

4686.336 psi OK

13.6375 psi OK Doesn't Control

Wall Segment 2

Wall Segment 2		
1 =	7 ft	
P =	5.45475 kips	
Wind Segment =	2.235559 kips	
M =	281.6805 kip*in	
1 =	84 in	
t =	5.625 in	
fa =	0.011544 ksi	
$\mathbf{r} =$	1.9 in	Partiall Grouted
h/r =	66.31579	
Fa =	0.290859 psi	
Try no 5 at end of wall		
d =	80 in	
b =	5.625 in	
As =	0.3 in^2	
p =	0.000667	
n =	21.5	
pn =	0.014333	
k =	0.155585	
j =	0.948138	
fb =	106.083 psi	
Fb =	855 psi	> 106.083 psi OK
fs =	12378.66 psi	
$F_S =$	32000 psi	> 12378.66 psi OK
M/Vd =	3.50	
fv =	12.12167 psi	
$\mathbf{F}\mathbf{v} =$	21.79 psi	> 12.12167 psi OK
Fv =	77.46 psi	Doesn't Control
		

wan segment -	W	all	Segment	4
---------------	---	-----	---------	---

1 =	2	ft		
P =	1.70475	kips		
Wind Segment =	0.109138	kips		
M =	13.75133	kip*in		
1 =	24	in		
t =	5.625	in		
fa =	0.012628	ksi		
r =	1.9	in	Partiall Gro	uted
h/r =	66.31579			
Fa =	0.290859	psi		
Try no 5 at end of wall				
d =	20	in		
b =	5.625	in		
As =	0.3	in^2		
p =	0.002667			
n =	21.5			
pn =	0.057333			
$\mathbf{k} =$	0.286111			
j =	0.90463			
fb =	47.22666	psi		
Fb =	855	psi	>	47.22666 psi OK
fs =	2533.51			
Fs =	32000	psi	>	2533.51 psi OK
M/Vd =	3.50			
fv =	15.15333	psi		
Fv =	21.79		>	15.15333 psi OK
$F_V =$	77.46	psi	Doesn't Con	ntrol

BY INSPECTION: Module 20' wall with one window will work with similar reinforcing

PR Prescriptive Homes Calculations

JOB TITLE PR Homes: Two story Wood/CMU House

-664.684 lbs OK

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

Twelve Foot Opening Design

DL roof =	20	psf	
Lr =	40	psf	
Half of Roof Width =	12.65	ft	
Height Above Opening =	1	ft	
Header DL =	252.98	lb/ft	
Header LL =	505.96	lb/ft	
Effective wind area =	21.33	sf	
D+L =	758.95	lb/ft	
0.6W =	-221.56	lb/ft	
Try 5.25 x 12			
b =	5.25		
d =	12.00		
$S_X =$	126.00	in^3	
$I_X =$	756.00	in^4	
Sy=	55.13	in^3	
Iy =	144.70	in^4	
Mapp D+L =	13661.04	lb ft	
Applied Stress D + L =	1301.05		
Allowable Stress 2.6F-1.9E =	2600.00	psi	OK
Use L/360 defl criteria for britle windows =	0.4	in	
Applied Live Load Deflection =	0.164343332	in	OK
Moment 0.6W =	-3988.106198	lb ft	
Applied Stress 0.6W =	-868.1591724	psi	
Fby =	1600	psi	OK
V app =	-1329.368733	lbs	OK
fv applied =	216.8418967	psi	
F _V =	300	psi	OK
V out of plane =	-997.0265495		
Use HGA10 KT =	1165	lbs	OK

LVL PLY Connector Design

Max Shear Wind Loads =	-1329.368733	lbs	
Ply width =	1.75	in	
Ply height =	9.25	in	
Total width =	5.25	in	
Q =	14.1640625	in^3	
I =	111.5419922	in^4	
VQ/I =	-2025.704736	lbs/ft	
TRY 2 SDW22500-R50 screws			
Z' =	275	lbs/ft	
Spacing Required =	3.258125374	in	OK
USE 2 SDW22500-R50 screws staggered at 3" on	center	·	

Three Foot Opening Out of Plane Check

V(D+L) =	1138.42			
V(0.6W) =	-332.342			
HGA10kt out of plane =	1165	lbs	>	-332.342 lbs OK

Six Foot Opening Out of Plane Check				
V(D+L) =	2276.84			
V(0.6W) =	-664.684			
HGA10kt out of plane =	1165 lbs			

Use HGA10 KT for 3' and 6' openings for gravity conn. check see "Wall Design Calcs per WFCM" for uplift see "Wall Design Calcs"

		Span/2 = $6'$	therefore not a deep beam.
Dead =	481.25 lb/ft	1	1
Live =	550 lb/ft		
Self=	192 lb/ft		
	1223.25 lb/ft		
V =	4281.375 lb		
b =	5.625		
d =	30		
applied			
shear stress =	25.37111 psi		
F'v = 2 * sqrt(1900) =	87.17798 psi		
$M = \frac{1}{2} \operatorname{Sqrt}(1900)$	22018.5 lb-ft		
dv =	30 in		
M/(Vdv) =	1		
Fvm =	49.03761	OK	
I viii –	49.03/01	No stirrups req.	
		no surrups req.	
M app =	264222 lb in		
As pro =	0.6 sq in	2 NO 5	Check spacing
As pro – b =	5.625	2 NO 3	1.375 >1" OK
d =	3.023		1.373 >1 OK
u – Rho =	0.003556		
	21.5		
n =			
nRho =	0.076444		
k =	0.321968		
j =	0.892677	O.W22000	
fsteel =	16443.79 lb in	OK<32000	0.5.5
fbmasonry	363.1838 lb in	OK < 0.45*1900 =	855
Masonry Lintel Deflection			
b =	5.625 in		
h =	22.875 in		
Ig =	5610.797 in^4		
fr =	1047.318 psi		
yt =	11.4375 in		
Mcr =	513773.9 lb in		
M =	264222 lb in		
Mcr/Ma =	7.352063		
Em =	1350 ksi		
n =	21.48148		
d =	32 in		
As =	0.31 in^2		
	0.001722		
p =			
np =	0.036996 7.600727 in		
c =			
Icr =	4787.737 in^4		
Ie =	331872 in^4	OW	
W =	0.05125 k/in	OK	
L =	144 in		
Defl =	0.00064 in		
L/600 =	0.24 in		

```
Out of plane loading
Wind Load =
                               -92.31727 psf
Span =
                                      12 ft
M =
                               -1661.711 lb ft
Fb all =
                                      65 psi
Fv =
                                38.72983 psi
S =
                                  168.75 in^3
M/S =
                               -118.1661 psi
                                                     NG
Count on Bars at Bottom and top
                                      0.6 two number fives
d =
                                  2.8125
b =
                                      32
p =
                                0.006667
n =
                                     21.5
                                0.143333
pn =
k =
                                0.410933
                                                                                      OK
                                0.863022
j =
                                                     < 32000 psi OK
F_S =
                               -13692.13 psi
Fbm =
                               -444.2615 psi
                                                     Fb all =
                                                                      855
3 fully grouted cells next to masonry wall
As =
                                      0.9
Point load =
                               -553.9036 lb
                                  15.625
b =
                                  2.8125
d =
M =
                                     1.55 kip ft
                                    1550 lb ft
M =
                                      0.9 three number fives
As
d =
                                  2.8125
                                  15.625
b =
                                 0.02048
p =
                                     21.5
n =
                                 0.44032
pn =
                                0.596271
k =
                                0.801243
i =
                                9170.937 psi
                                                                OK
F_S =
Fbm =
                                629.9843 psi
                                                                OK
6' Lintel
Dead =
                                     411 lb/ft
                                                                not a load bearing wall
                                      80 lb/ft
Live =
Self=
                                      42 lb/ft
                                     533 lb/ft
V =
                                    1599 lb
b =
                                   5.625
d =
                                  11.125
                                                     two grouted cores
applied
                                25.55206 psi
shear\ stress =
F'v = 2 * sqrt(1500) =
                                77.45967 psi
M =
                                  2398.5 lb-ft
dv =
                                  11.125 in
M/(Vdv) =
Fvm =
                                43.57106
                                                     OK no stirrups Fvm > applied
```

```
M app =
                                  28782 lb in
As pro =
                                     0.3 sq in
b =
                                   5.625
d =
                                  11.125
                               0.004794
Rho =
n =
                                    21.5
nRho =
                               0.103071
\mathbf{k} =
                                0.36251
                               0.879163
j =
fsteel =
                               9809.122 lb in
                                                    < 32000 psi OK
                                                    Fb all =
                                                                      675
fbmasonry
                                259.441 lb in
```

Masonry Lintel Deflection

b =	5.625 in	
h =	15.25 in	
Ig =	1662.458 in^4	
fr =	290.4738 psi	
yt =	7.625 in	
Mcr =	63331.22 lb in	
M =	28782 lb in	
Mcr/Ma =	10.65346	
Em =	1350 ksi	
$_{n} =$	21.48148	
d =	12.5 in	
$A_S =$	0.62 in^2	
p =	0.008818	
np =	0.189419	
c =	5.682083 in	
Icr =	963.0706 in^4	
Ie =	846612 in^4	
$\mathbf{w} =$	0.05125 k/in	
L =	144 in	
Defl =	0.000251 in	OK
L/600 =	0.24 in	

		Span/2 = 6'	therefore not a deep beam.
Dead =	475 lb/ft	Span 2 0	therefore not a deep beam.
Live =	200 lb/ft		
Self =	85.33333 lb/ft		
2011	760.3333 lb/ft		
	70000000 10/10		
V =	2661.167 lb		
b =	5.625		
d =	17.375		
applied			
shear stress =	27.22856 psi		
F'v = 2 * sqrt(1900) =	87.17798 psi		
M =	13686 lb-ft		
dv =	17.375 in		
M/(Vdv) =	1		
Fvm =	49.03761	No Stirrups Pro	
		1	
M app =	164232 lb in		
As pro =	0.6 sq in	2 no 5	Check spacing
b =	5.625		1.375 >1" OK
d =	17.375		
Rho =	0.006139		
n =	21.5		
nRho =	0.13199		
k =	0.398483		
j =	0.867172		
fsteel =	18166.71 lb in	OK<32000	
fbmasonry	559.7579 lb in	OK < 0.45*1900 =	855
Masonry Lintel Deflection			
b =	5.625 in		
h =	14 in		
Ig =	1286.25 in^4		
fr =	1047.318 psi		
yt =	7 in		
Mcr =	192444.7 lb in		
$\mathbf{M} =$	164232 lb in		
Mcr/Ma =	1.608957		
Em =	1350 ksi		
n =	21.48148		
d =	32 in		
As =	0.31 in^2		
p =	0.001722		
np =	0.036996		
c =	7.600727 in		
Icr =	4787.737 in^4		
Ie =	-9796.567 in^4	0.77	
$\mathbf{w} =$	0.05125 k/in	OK	
L =	144 in		
Defl =	-0.021696 in		
L/600 =	0.24 in		

PR Prescriptive Homes Calculations

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20
		

Foundation and Porch Conc. Design

DI -	20	C	
DL = LL =		psf psf	
LL = Lr =		psi psf	
Wall Weight Wood=		psi psf	
Wall Weight Masonry =		psf	
Wall Height CMU =	10.5	•	
Wall Height Wood =		ft	
Bearing Width Footing =	2	ft	
Slab Wt.	75	psf	
Trib 24' wall	10	ft	
D+ (24' wall)	1050.75	lb/ft	
L (24' wall)	225	lb/ft	
Trib 20' wall	3	ft	
D (20' wall)	854.5	lb/ft	
Increase for Gaps in Wall Carried by beam =	2.823529412		
D INTERIOR WALL =	2647.058824	lb/ft	
L INTERIOR WALL =	1411.764706	lb/ft	
Footing Weight =	300	lb/ft	
Bearing Pressure/ft =	787.875	psf/ft	2' wide footing
Allowed Bearing Pressure =	1500.00	psf	OK
Uplift Check:			
Dead Load into Ram 24' wall =	1516.00	lb/ft	
Dead Load into Ram 20' wall =	854.50		
Live Load into Ram 24' wall =	225.00	lb/ft	
Wind Uplift =	-94.70103178		
Wind Uplift into Ram 24' wall =	-947.0103178		Uplift transferred through trusses
Wind Wall Pressure =	94.45	4	Combined
Wind Overturning Moment =	16163.48		
Wind Overturning into Ram 24' wall =	808.1741511		Compression or Uplift
Total Uplift Wind Only =	1755.184469		
Uplift on Compression Wall =	-138.8361667	lb/ft	

Safe Room Loads:

Safe Room Louds.		
DL Roof =	75	psf
LL =	150	psf
Wall Wt. =	512	lb/ft
Wind Speed =	250	mph
Kd =	0.85	
Kzt =	1	
G =	0.85	
Kh =	1.03	
qz =	140.08	psf
G =	0.85	
Cp windward =	0.8	
Cp leeward =	-0.5	
Cp Side =	-0.7	
Cp roof =	-0.9	
Gepi =	0.55	
Windward load =	18.2104	psf
Leeward load =	-136.578	psf
Upward Load =	-184.2052	psf
Sidewall Load =	-160.3916	psf

Porch Wind lods

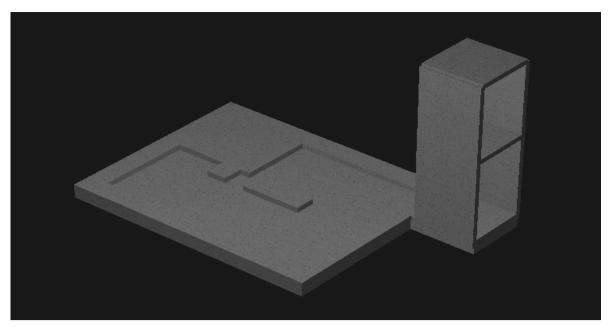
DL Roof=	self		
LL =	40	psf	
	100		1
Wind Speed =		mph	
Kd =	0.85		1
Kzt =	1		1
G =	0.85		
Kh=	1.1]
qz =	86.40896	psf	
G =	0.85		
Cn =	1.2		
Cf =	2		
Wall Wind Load =	146.8952	psf	
Roof Uplift =	88.13714	psf	
Wall Span =	11.5	ft	
Mu (wind) =	2.428362	k ft	
As req prelim =	0.151773		No.6 at 12"
As min =	0.144	sq in	
Vu =	2.111619	kip	
Phi Vc =	3.943602		8" Wall d =4"
a =	0.575163		
d =	3.625	in	
Phi Mn =	6.608088	kip ft	OK

make roof steel similar to wall steel (roof has less loads and smaller span)

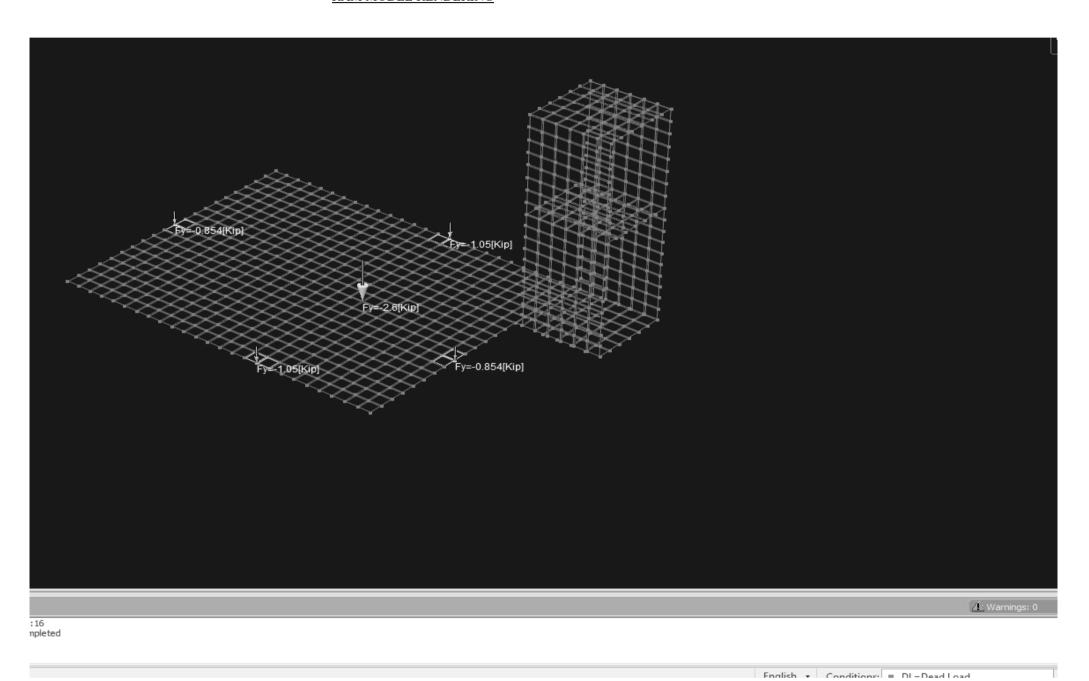
RAM Results:

Max Uplift =	0.05	in	Minimal		
Max Slab Stress =	0.36	ksi]		
Modulus of Rupture/Safety Factor =	0.205395959	ksi	Need Ten	sile Reinfor	cement
Max Bearing Pressure =	755	psf	OK	< 1500	psf
Applied Moment (ASD)	_		_		

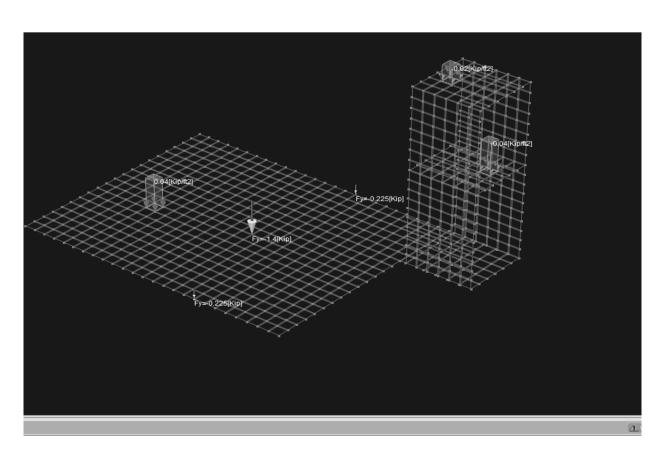
M =	810	ft lb	per foot of slab
MOR =	410.7919181	psi	
b =	12	in	
h =	4	in	
Mer =	1095.445115	ft lb	
M*FS =	1620	ft lb	> Mcr Need to
As =	0.017910448		
As subdrag=	0.02		
As provided =	0.28		W8 x W8 4" s
d =	2		
a =	0.039215686		
c =	0.046136101		
$E_S =$	0.12705	> 0.005	Tension Contro
Ma =	2772.54902	ft lb > Ma	pplied x FS OK

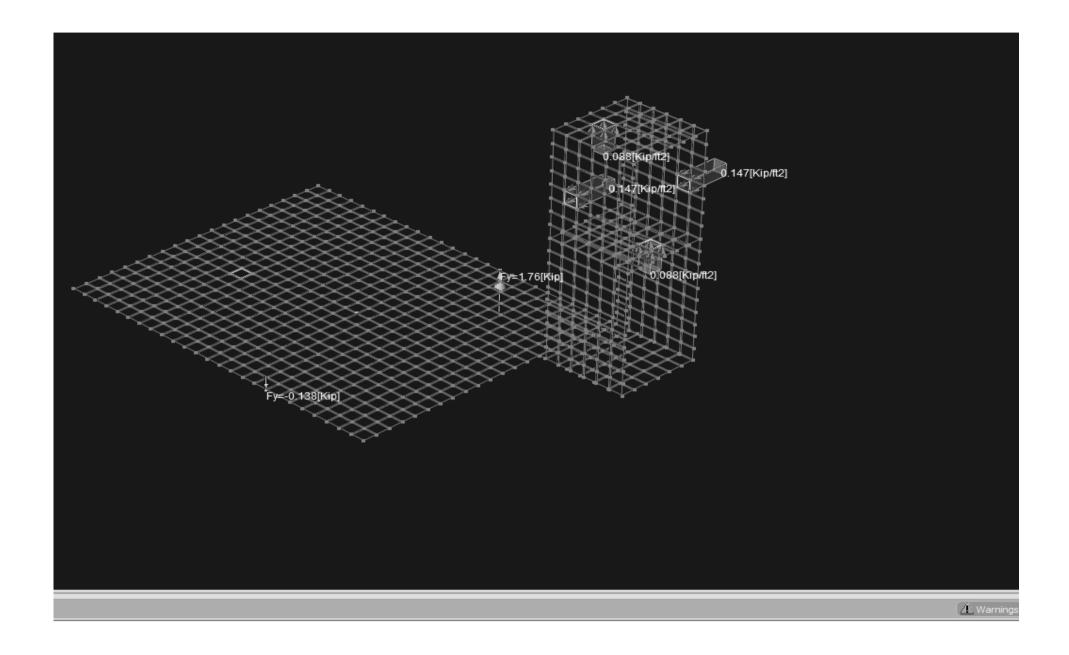

> Mcr Need to count on reinf

W8 x W8 4" spacing

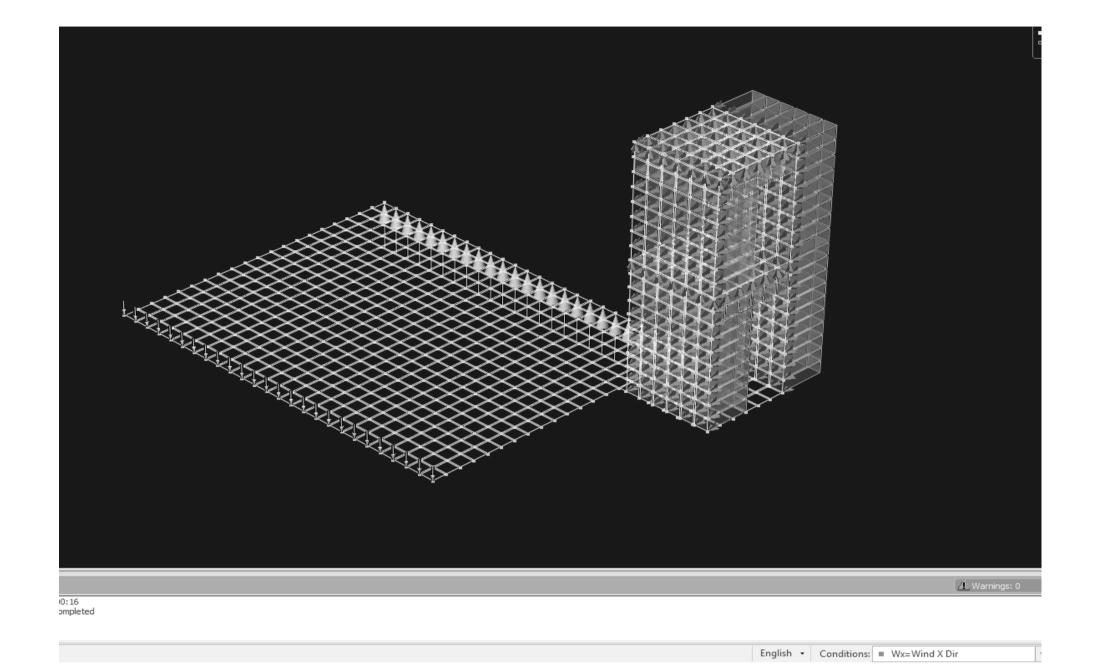

Tension Controlled

Assumed Center specify

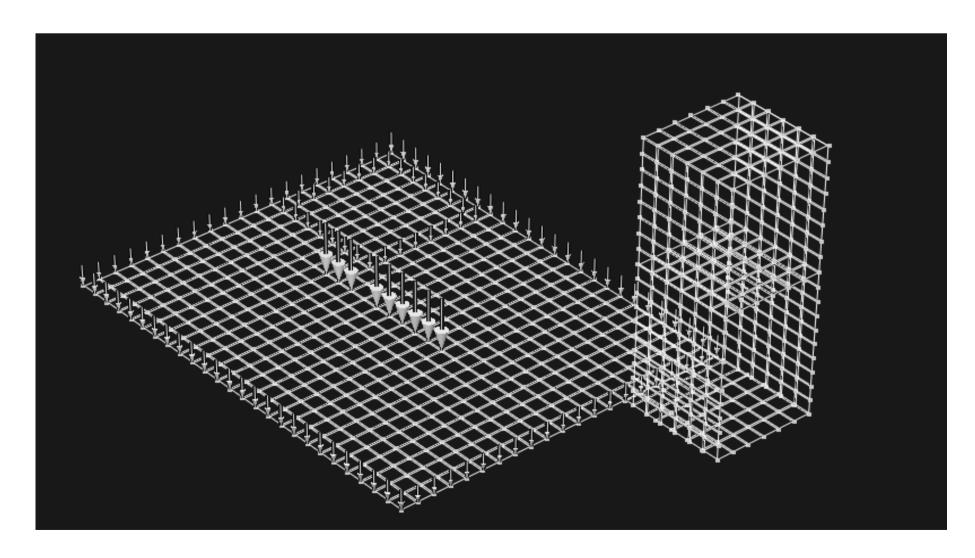

upper 1/3


RAM MODEL RENDERING

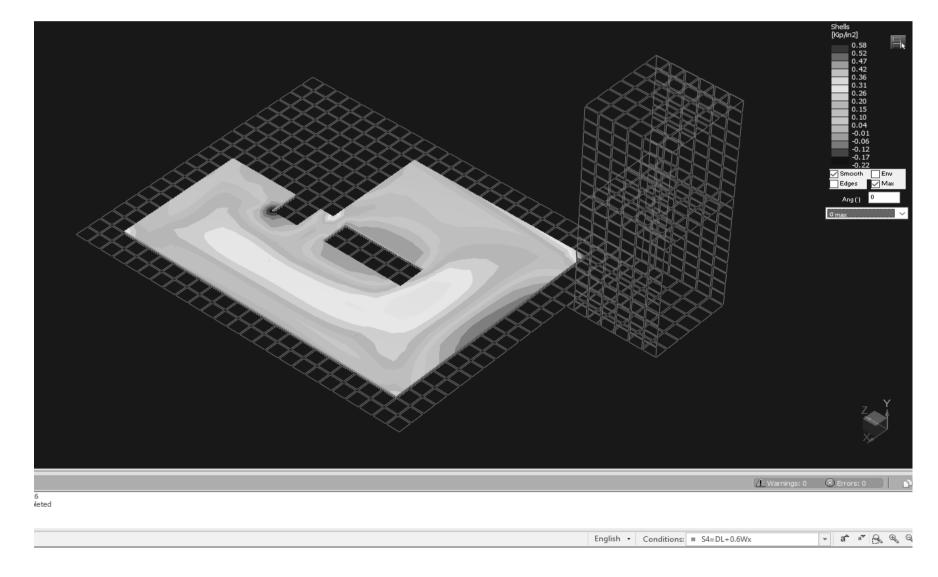
RAM MODEL APPLIED DEAD LOADS



English → Conditions: ■ LL=Live Load



English ▼ Conditions: ■ Wx=Wind X Dir


RAM MODEL APPLIED WIND LOADS

RAM MODEL APPLIED WIND LOADS

RAM MODEL APPLIED DEAD LOADS

RAM MODEL APPLIED STRESS

PR Prescriptive Homes Calculations

No. 5 at 12

OK OK JOB TITLE PR Homes: Two story Wood/CMU House

JOB NO.	SHEET NO.	
CALCULATED BY SW	DATE	2/6/20
CHECKED BY MH	DATE	2/6/20

Inteior Beam Design

Interor Deam Design			
DL =	0.9375	k/ft	
LL =	0.5	k/ft	
Wu =	1.925	k/ft	
Span =	11.33	ft	
Vu =	10.905125	kip	
Min depth =	8.4975	in	
Ceiling Height is 9'-4" minus 6" = 8'-10"			
Even block course at 8'-0" try 10" deep bea	m		
8" width			
Phi Vc =	8.544471897	kip	
Try No. 4 at 18"			
Phi Vs =	8	kip	OK
Phi VC + Phi VS =	16.5444719	kip	OK
Av/s pro =	0.02222222	OK	
Av/s Min =	0.006846532		
Av/s Min =	0.005		
d =	13	in	
Mu =	30.88876656	k ft	
As flexure required =	0.594014742	sq in	2 no 5
As min =	0.213611797	sq in	
As min =	0.26	sq in	

2 no 5 with no. 4 stirrups at 18" on center

Elev Slab Design

Span =	11.33 ft
Dl =	0.075 k/ft
LL =	0.04 k/ft
Wu =	0.154 k/ft
Mu =	2.471101325 k*ft
Vu =	0.77 kip
As req =	0.247110133 sq in
As min =	0.144 sq in
Phi Vc =	2.464751509 kip

ACI does have an exception for 10" deep beams however if the slab is included in the beam depth then the beam is really 16" deep

PR Prescriptive Homes Calculations

 $\textbf{\textit{JOB TITLE}} \ \underline{PR \ Homes: Two \ story \ Wood/CMU \ House}$

JOB NO.		SHEET NO.	
CALCULATED BY	SW	DATE	2/6/20
CHECKED BY	MH	DATE	2/6/20

Exterior Stair Deam Design		_
DL slab and stairs =	75	psf
LL slab and stairs =	40	psf
Trib =	12.58	ft half of stairs and all of landing
Wu =	1.93732	k/ft
Span =	3.5	ft
Vu =	3.39031	kip
Try 10" deep x 8" wide beam		1
d =	7.5	in
Phi Vc =	6.161878772	kip Since h<= 10" per ACI Table 9.6.3.1 Min. Stirrups not required.
Mu =	2.96652125	k ft
As flexure required =	0.098884042	sq in 2 no 5
As min =	0.205395959	sq in
As min =	0.25	sq in CONT 2 no 5 As pro = 0.6 sq in.
Tu =	2.23685	kip ft
Acp	100	sq in
Pcp =	40	in
Torsion Threshold =	0.855816496	kip ft < 2.23 kip ft Therefore Stirrups Req.
At/s =	1.21833E-06	
No. 4 at 12" At/s =	0.016666667	ОК
As min =	0.1	< 0.4 sq in ok Use No. 4 at 12" Stirrups

Wall Design Wu =

wan besign		
Wu =	146.895232 psf	
Span =	10.5 ft	
Mu =	2.024399916 k*ft	
Vu =	0.771199968 kip	
As req =	0.202439992 sq in	No. 5 at 12
As min =	0.144 sq in	OK
Phi Vc =	2.464751509 kip	OK
Wall FTG Design		

BRG = 760.625 lb/ft Span = 0.75 ft 0.288 sq in As min =

2'-0" width OK < 1500

OK No. 5 at 12"